Showing posts with label complexity in systems. Show all posts
Showing posts with label complexity in systems. Show all posts

Monday, September 26, 2022

Writing about systems





The universe is full of systems. And actually, it is the system itself. But if we want to make things like quantum computers, we must limit the number of participants. Or the system turns too hard to control. 

When you make systems, first you must separate the system's actors from another entirety. Or the system turns impossible to control. The participant of the quantum system is quantum particles and electromagnetic fields. 

Systems turn very complex easily if they are too big. In the system, every participant has a role. If some participants' energy level is too low. That means the other participants must deliver energy to it. And if one participant's energy level is too high, it shares energy with other participants. If all participants are at the same energy level. That means information cannot travel in the system. 

When you want to make some kind of system, you must separate the participants of systems from the environment. Otherwise, the communication with those participants will not be successful. In quantum systems, the separation can be done by using the energy level and then adjusting the oscillation of the participant with the same level. The base energy level is the thing that separates the entirety of the system from its environment. 



The quantum system is like a tree there are leaves around it. Those leaves are the particles that have similar oscillation and the tree is the thing that has a similar frequency but the energy level is higher. In that kinds of systems, the energy flows from the particles with a higher energy level to particles that have the same oscillation frequency but a lower energy level. 

That separation can raise or lower the energy level of those participants. Rising the energy level is easier to make. And the higher energy level is easier to control than the lower energy level. When we think about the quantum entanglement that plays a vital role in quantum computers we must realize one thing. The energy level between the ends of the quantum entanglements must be different. 

When the energy level on another side is higher. That allows the information travels longer in the quantum entanglement. The thing that destroys the entanglement is that the system reaches energy stability. When the energy level between those particles is the same the data is not traveling. 

So the solution for that problem can be in 2D quasiparticles or particles at the minimum energy level. In that case, the particle or the edge of the quantum entanglement can be on the quasiparticle or particle that is in the lowest energy level possible. That thing conducts energy away from the quantum entanglement. 

If energy can flow away from another side of the quantum entanglement. That thing means energy or information can travel a long time in the quantum computer. The reason for that is the adjusting of the quantum entanglement will remain for a longer period. And that thing makes this system more powerful than ever before. 


Image and sources. 


(https://scitechdaily.com/new-invention-triggers-one-of-quantum-mechanics-strangest-and-most-useful-phenomena/)

Friday, April 22, 2022

Where is the inconsistency of quantum theories?



The image above portrays Andromeda Galaxy (M31) (Image: Pinterest): Galaxies are giant quantum systems that involve multiple quantum subsystems. The quantum system means the group of particles and systems. That is inside the same field. 

A quantum system is a group of subsystems that interact with each other. Or it can mean the group which reacts to the same energy impulse. 

There are two different main types of quantum theories. The quantum particle theories. And quantum field theories. The wave-particle duality connects those theories. 


1) Quantum particle theories


Those theories handle the relations of subatomic particles. They are theories that are consisting the quantum gravitation and quantum electromagnetism. Those things are connecting subatomic and elementary particles to larger entireties like atoms.

The wave-particle duality means that every particle has particle and wave movement forms. But connecting the interaction between wave movement and particles is a little bit difficult. If we think that every single elementary particle is forming from rolling wave movement. That means that every single elementary particle forms from the different length bites of wave movement.



2) Quantum field theories 


Those theories handle the interactions of the quantum fields that are surrounding all particles. The term "quantum field" means different types of electromagnetic and gravitational fields around all particles. At the level of subatomic particles, even a single photon has an effect. 

So the quantum field theories should consist of at least two different types of quantum fields. The large-size quantum fields and small-size quantum fields should have their theory. The large-scale quantum fields are affecting galaxies and even larger entireties. 

And the small-scale quantum fields are interacting between subatomic particles. Those quantum fields are interactions. 

So the galaxies are pushing and pulling each other. The radiation that comes from the galaxy is pushing particles away from it. And then the gravitation pulls particles to it. But things like micro-and quantum gravitation have also affected the universe. Even things like electron and hydrogen clouds have a gravitational effect if the number of those particles is high enough. 


But then we can see that the quantum theories are not even near being ready. 


Should we need more quantum theories? The answer is "yes". 


Sometimes we should think also do we need a theory about the information? The thing is that there is a theory, that information is the state of the material. 


Quantum mechanics is part of the quantum field theories. It handles the rotations and interactions of the quantum fields around the material. The thing is that quantum mechanics is hard to connect with other theories because it handles the power fields and things like superstrings. 

The idea is that those superstrings are the bites of wave movement. But the thing is that the interaction between material and space happens through the quantum fields. So the idea is that the material is only the extremely dense quantum field. That means all material can turn to wave movement and back to particle form. 

But do we need different theories for quantum systems and large-size quantum systems? When we think about the interaction between electron and proton in the hydrogen atom electromagnetism dominates that interaction. When hydrogen atoms number turns high enough, the gravitation turns to dominate. 

Galaxies, galaxy groups, and the universe are the largest quantum systems in the, well, universe. The thing is that the quantum systems are involving multiple sub-systems. The most complicated structure in the universe is the universe itself. If we could see the universe from outside its ball. But when we are closing it we see the substructures like the cosmic web, galaxies, stars, molecular and atomic clouds. Planets, molecules, and atoms. Finally, we could see quarks and things like gluons. 

They are all closed in the giant quantum field called the universe. When we are thinking of the quantum systems of water and air. The air can affect things that are at the border between those quantum systems. Of course, air can affect also underwater objects. But water covers that effect. So for underwater objects, the water is dominating the quantum system that covers the effect of the air under it. 

We can see the universe where we are as dominating the quantum system. But between us and the universe's entirety is trillions of subsystems like the plasma ring of the Earth. The plasma ball around the sun. The local star group, and the milky way. Then the local and main galaxy group and finally the cosmic background are covering the edge of the universe from us. And finally, the entirety of the universe covers the effect of the possible other universes below it. The dominance of the quantum systems determines how we see those things. 

If we are looking at things like galaxies. They form their quantum systems. Those systems are interacting with other galaxies. But there is one galaxy that we cannot ever really see. That galaxy is our galaxy, the Milky Way. Because we are inside that system, we cannot see it from the outside. We know that is like many other galaxies. But we cannot see the Milky Way. 

When we are inside the quantum system we can observe its participants. But when we are outside the quantum system we can observe its shape. We cannot see the entirety and the individual participants at the same time. We can observe things like the behavior of the single electrons all the time. But we cannot see how the electron groups of the galactic-size entirety are behaving. 

We can see individual electrons or groups of electrons. But we cannot see them at the same time. 

We see dust and ice or plasma that forms galaxies. And we know that there are electrons. But we cannot see those electrons from the images of the galaxies. Of course, we know that all atoms have an electron cloud. But the bright light or large photon group is covering those electrons from us. And when we are looking at material, we see only quantum fields that cover them. 


https://miraclesofthequantumworld.blogspot.com/


What was before the Big Bang (Part II)

 What was before the Big Bang. (Part II) "Our universe could be the mirror image of an antimatter universe extending backwards in time....