Skip to main content

Researchers of LANL (Los Alamos National Laboratory) wrote the beginner's guide to quantum programming.


"A new guide on programming quantum algorithms leads programmers through every step, from theory to implementing the algorithms on IBM’s publicly accessible 5-qubit ibmqx4 quantum computer and others". (Scitechdaily.com/A Beginner’s Guide to Quantum Programming)


The reason why quantum computers are under development is that they can drive complicated AI algorithms. But those algorithms are not formed from nothingness. There must be programmers who are making those algorithms that are driving robots independently on the streets. 

 "ACM Transactions on Quantum Computing" is the quantum programming handbook. The researcher's team at Los Alamos National Laboratory is behind that handbook. You can also find those people's names can find in the publication and link below this text. 

You can also find more information about that book on the ACM (Association for Computing Machinery) homepages or other homepages by using the keywords " "ACM Transactions on Quantum Computing". 

Making quantum algorithms is different than making binary algorithms. The requirement for that new skill is the knowledge of quantum principles and mathematics behind them. The thing is that quantum computing is a quite new field in computing. And that means almost all people are rookies with that thing. 

The ability to make code for the system requires that the programmer knows about how the system works. When the rules of that system are becoming public, there would be more programmers who can make software for those systems. And that increases the spread of the quantum systems.

Making smooth and effective quantum systems that are as easy to use as modern binary systems requires deep knowledge of the work of quantum computers. When quantum computers are turning more common the knowledge about their work increases. And when the number of developers of physical computers and software solutions is increasing, that will increase the development of quantum computers. 

As I many times wrote more programmers are noticing errors better than one. And when the new application developers are involved in the quantum computers that make them easier to use. Maybe quite soon, the use of quantum computers is easy as the use of  Windows, Linux, or UNIX computers. And maybe sooner than we even think there would be the possibility to use quantum computers without binary interfaces. 

Maybe in the future, we can use algorithms to program human brains. The idea is that the algorithm makes synthetic EEG which involves some skills. And that synthetic EEG will be driven to the brains by using modified electric shock systems. When the data is driven to the brains by using cortex stimulation the brains cannot resist that data. 

When we are thinking about the future of computing, we must realize one thing. Some quantum computers of tomorrow are emulating the human brains. And some visions cloned neurons can use as computers. This thing makes it possible that in the world of tomorrow, some programmers will program algorithms for those half-organic microchips. The idea is that the living neuron will control computers through the microchips. 

And that thing brings an induction vision to my mind. Maybe someday we can write algorithms for the human brain. That means we can make the synthetic EEG and use that thing as the computer program, that programs humans. That thing brings an ability to learn new skills in seconds. 

But that same thing brings a new type of responsibility to programmers. The fact is that synthetic EEG can make a revolution in training and education. 

Sources: 

https://scitechdaily.com/a-beginners-guide-to-quantum-programming/


https://miraclesofthequantumworld.blogspot.com/

Comments

Popular posts from this blog

Schrödinger's cat: and the limits of that idea.

"In quantum mechanics, Schrödinger's cat is a thought experiment concerning quantum superposition". (Wikipedia, Schrödinger's cat). But the same thing can use as model for many other thought experiments.  Sooner or later, or at least in the ultimate end of the universe, the Schrödinger's cat will turn into wave movement. The information that this cat involved exists but the cat does not exist in its material form. The information doesn't ever vanish. It just turns its shape.  We are all trapped in the universe and time. The universe is the space that is entirety to us. There are no confirmed other universities. But the multiverse is a logical continuum for the expanding galactic megastructures.  The problem with natural things is this. They are black and white. They exist or do not exist. Could there be something, that exists and not exists at the same time?  Scrödinger's cat is thinking experiment about case their cat is not dead or not alive. But in this...

The string theory offers a new way to calculate Pi.

"Scientists discovered a new series for pi through string theory research, echoing a 15th-century formula by Madhava. By combining Euler-Beta Functions and Feynman Diagrams, they modeled particle interactions efficiently. Credit: SciTechDaily.com" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Leap in Mathematics) People normally think that. The pi is the ratio of the circumference circle's circumference to the circle's diameter. The Pi is a mathematical constant 3.14159..., the endless decimal number. The Pi is interesting because developers can use that decimal number to make the encryption algorithms stronger.  The idea is that the encryptions program hides the message's original ASCII numbers by multiplicating those numbers with some decimal number. Or the system can add some numbers to those ASCII numbers.  "Aninda Sinha (left) and Arnab Saha (right). Credit: Manu Y" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Le...

There are always more than three actors in the real world.

"An international research team is advancing precision timekeeping by developing a nuclear clock using thorium isotopes and innovative laser methods, potentially transforming our understanding of physical constants and dark matter. (Artist’s concept.) Credit: SciTechDaily.com" (ScitechDaily, Unveiling the Thorium Nuclear Clock and Its Time-Twisting Secrets) From Three-body problem... There are no pure three-body systems in nature. There are always more than three components in the system. For making real three-body systems we must separate those three bodies from the environment. Otherwise, there are stable effects. But nobody can predict some effects like distant supernova explosions or sun eruptions.  And one of those things that affect all bodies is time. When radioactive materials decay. That affects the stability and symmetry of the object.  Energy levels affect the existence of things like neutrons. The thorium atom clocks are next-generation tools for time measurement....