Skip to main content

Quantum cryptography makes it possible to create unbreakable codes.

 



Things like BlowFish and TwoFish encryption are been begin to the development of quantum cryptology. The virtual model of quantum encryption uses the series of prime numbers along with some other numbers. For the multiplication of the ASCII codes. 

Those prime numbers can be so-called quantum prime numbers, and they can be decimal numbers that are involving thousands of numbers. So the creation of those numbers is difficult. But quantum computers changed the game. They can create those quantum prime numbers in a very short period. 

Quantum cryptology is like the use of imaginary numbers to create an encryption algorithm. But in the real quantum encryption process, the encryption key is stored in a physical form called a qubit. The qubits are physical components, and the hackers cannot get data from them without destroying those qubits. 

The thing that makes the quantum system very secure. Qubits can be photons, electrons, protons, quarks, or some ions. The information will load to qubit and the breaker must know, what is the thing that forms qubit? If the qubit is made by using protons the system cannot open data if it uses electrons or photons as qubits. The decoding key can be stored as an example in the Einsteinium ions and then the receiving system can get the decoding key from the quantum USB memory. 

In real cryptology, nobody sends the decoding key by using radio transmission. Same way as in binary systems. In quantum systems, the system can store decoding algorithms in quantum USB. Which is the thermos bottle where qubits are stored. And then the courier will connect that quantum USB to the system. 

There is made research for securing data transmissions by using ultra-radioactive isotopes. The highly radioactive isotope that exists for only a couple of seconds can use as crystals in oscillation circuits. When massage has left. Warming of the circuit destroys those crystals. 

If the decoding key is stored in the short-living radioactive ions those systems can be unbreakable. And the reason for that is the receiving system must know what kind of qubits is used for storing the encryption key.

Even if atoms or ions cannot use to transmit data in the quantum processors they can use to store the encryption keys. If the receiving system needs to open a message it requires the information on what kind of qubit the transmitting system used. 

Those quantum communication systems might have thermos bottles where the qubits that are storing qubits that are involving the decoding algorithms. The system must know what is the bottle. And where are certain qubits? And the transmitting system can say that the "decoding algorithm is in bottle 4". 

The algorithm can be stored in the short-living radioactive ions or atoms. And when it's downloaded to the system. The high temperature makes that ion vanish because of radioactive breakup. The system must not know what kind of qubit the data is stored. And short-living radioactive isotopes can be stored at zero kelvin temperature. 

The quantum encryption system can involve multiple internal systems. And the reason why it can use highly radioactive isotopes in ultra-secured data transmissions is that those isotopes are dangerous to handle. And that's why nobody can steal them. In some visions, the quantum systems could use antimatter as the qubits. When the system used that qubit, it will destroy it immediately. 


https://www.thetimes.co.uk/article/quantum-cryptography-raises-possibility-of-unbreakable-codes-jrxx8mw20


https://miraclesofthequantumworld.blogspot.com/

Comments

Popular posts from this blog

The LK-99 could be a fundamental advance even if it cannot reach superconductivity in 400K.

The next step in superconducting research is that LK-99 was not superconducting at room temperature. Or was it? The thing is that there is needed more research about that material. And even if it couldn't reach superconductivity in 400K that doesn't mean that material is not fundamental. And if LK-99 can maintain its superconductivity in 400K that means a fundamental breakthrough in superconducting technology.  The LK-99 can be hype or it can be the real thing. The thing is, anyway, that high-voltage cables and our electric networks are not turning superconducting before next summer. But if we can change the electric network to superconducting by using some reasonable material. That thing can be the next step in the environment. Superconductors decrease the need to produce electricity. But today cooling systems that need lots of energy are the thing that turn superconductors that need low temperatures non-practical for everyday use.  When the project begins there is lots of ent

Black holes, the speed of light, and gravitational background are things that are connecting the universe.

 Black holes, the speed of light, and gravitational background are things that are connecting the universe.  Black holes and gravitational waves: is black hole's singularity at so high energy level that energy travels in one direction in the form of a gravitational wave.  We normally say that black holes do not send radiation. And we are wrong. Black holes send gravitational waves. Gravitational waves are wave movement or radiation. And that means the black holes are bright gravitational objects.  If we can use water to illustrate the gravitational interaction we can say that gravitational waves push the surface tension out from the gravitational center. Then the other quantum fields push particles or objects into a black hole. The gravitational waves push energy out from the objects. And then the energy or quantum fields behind that object push them into the gravitational center.  The elementary particles are quantum fields or whisk-looking structures. If the gravitational wave is

The CEO of Open AI, Sam Altman said that AI development requires a similar organization as IAEA.

We know that there are many risks in AI development. And there must be something that puts people realize that these kinds of things are not jokes. The problem is how to take control of the AI development. If we think about international contracts regarding AI development. We must realize that there is a possibility that the contract that should limit AI development turns into another version of the Nuclear Non-Proliferation Treaty. That treaty didn't ever deny the escalation of nuclear weapons. And there is a big possibility that the AI-limitation contracts follow the route of the Nuclear Non-Proliferation Treaty.  The biggest problem with AI development is the new platforms that can run every complicated and effective code. That means the quantum computer-based neural networks can turn themselves more intelligent than humans. The AI has the ultimate ability to learn new things. And if it runs on the quantum-hybrid system that switches its state between binary and quantum states,