Skip to main content

Nuclear fission and W-boson interactions: how to turn weak nuclear force repelling?



The main particles in the atom's nucleus are baryons called protons and neutrons. The thing that keeps those particles is the thing called "weak nuclear interaction", weak interaction" or weak nuclear force. Called also "W-boson interaction". 

The weak nuclear force is the thing that makes the atom's nucleus stay in one piece. The weak interaction is not the interaction between neutrons and protons. Its interaction between proton or neutron and W-boson. Also, Z-bosons transport weak nuclear interaction. So some notation where is mentioned W-boson could mean W-boson. There are two W-bosons. 

Those bosons are the (W^+)(W-plus), and (W^-)(W-minus)-bosons. Those bosons are the antiparticles to each other. So they are causing the weak nuclear force to interact in two ways. Z^0-bosons are their antiparticles. The weak interaction has two ways repelling or pulling. And normally the dominating is the pulling interaction. 

The W-boson is between the protons and neutrons. It has a similar mission in weak nuclear interaction as gluon has in the strong interaction. Same way as gluon is the transmitter of the strong nuclear interaction the W boson is the transmitter of the weak nuclear interaction. So those interactions are very similar. But the transmitter particles of those things are different. 

Sometimes is introduced that all interactions are the same. And the transmitter particles of those interactions are the different sizes of groups of the gluons. Nuclear interaction is not the interaction between particles. It's the interaction between fermions and the transmitter particle. 

The thing in the nucleus of the atom is that the protons are all positive particles. And neutrons are bipolar particles that have north and south poles. So the thing that keeps the nucleus of the atom in one piece is the south pole of the neutrons. The protons have only north poles. And they are repelling each other. And if the nucleus of the atom loses too many neutrons the repelling electromagnetic forces win the weak interaction and cut the W-boson interaction. 

The only uranium isotopes that are suitable for nuclear fission are U-233 and U-235. The reason for that is that there is an odd number of neutrons. If all neutrons have pair. They would turn their opposite poles against each other. But if all neutrons cannot have pair. That means that one neutron starts to spin. Neutrons act like all other double polar particles. They are turning their opposite poles against each other. 

And that thing locks them to that position. The idea is that when the neutrons have locked the stability of the system is guaranteed. But if two poles are turning against one neutron. That thing breaks the symmetry. And that can cause one neutron leaves its place. 

Or else two other neutrons turn their electric poles towards the odd neutrons. And it can disassemble the odd neutron. If one neutron is pulled out or another way to disassemble instead of that neutron, a hole will be formed in the atom's nucleus. And if that hole stays long enough, it'll rip the atom apart. We can say that the W-boson interaction turns to the opposite. The repelling part of the weak interaction turns dominating. 

The neutron impacts the atom's nucleus when nuclear fission starts. That impact transfers energy to the atom's nucleus. The thing that makes nuclear fission possible is that the W-boson interaction or weak interaction ends. When a neutron impacts an atom. Tt impacts another neutron. That thing causes the shockwave that impacts other neutrons. If there is an odd neutron in the atom. That shockwave pushes it away easier than if those neutrons have pairs. 

When one neutron has been left from the atom's nucleus, it leaves a hole after it. The W-boson that is connected to the proton collapses. And that thing sends energy waves through the atom. That energy impacts other W-bosons. And it causes the other W-bosons are pushing the protons and neutrons farther from each other. 

The requirement for the splitting of atoms is the W-boson interaction or weak interaction cuts in time that is long enough. The cut of W-boson interaction rips the atom into pieces. But that effect requires that the W-boson interaction cut takes long enough. 

The reason why uranium and plutonium are fissile elements is that those atoms are big. In big atoms, the W-boson interaction between neutrons is about larger than in small-size atoms. In small atoms, the weak interaction between protons and south poles of neutrons can keep the nucleus of an atom in one part. But in large atoms, the impacting neutron sends other neutrons away from the atom. 

And then the proton's electromagnetic repel along with the neutron's north pole interaction with protons are pushing those particles away from each other. That thing destroys the W bosons from the nucleus of the atom. And when W bosons are destroyed they release all energy stored in them. 


https://en.wikipedia.org/wiki/Fundamental_interaction


https://en.wikipedia.org/wiki/W_and_Z_bosons


Image: https://accessdl.state.al.us/AventaCourses/access_courses/physci_ua_v16/04_unit/04-02/04-02_learn.htm


https://miraclesofthequantumworld.blogspot.com/

Comments

Popular posts from this blog

The LK-99 could be a fundamental advance even if it cannot reach superconductivity in 400K.

The next step in superconducting research is that LK-99 was not superconducting at room temperature. Or was it? The thing is that there is needed more research about that material. And even if it couldn't reach superconductivity in 400K that doesn't mean that material is not fundamental. And if LK-99 can maintain its superconductivity in 400K that means a fundamental breakthrough in superconducting technology.  The LK-99 can be hype or it can be the real thing. The thing is, anyway, that high-voltage cables and our electric networks are not turning superconducting before next summer. But if we can change the electric network to superconducting by using some reasonable material. That thing can be the next step in the environment. Superconductors decrease the need to produce electricity. But today cooling systems that need lots of energy are the thing that turn superconductors that need low temperatures non-practical for everyday use.  When the project begins there is lots of ent

Black holes, the speed of light, and gravitational background are things that are connecting the universe.

 Black holes, the speed of light, and gravitational background are things that are connecting the universe.  Black holes and gravitational waves: is black hole's singularity at so high energy level that energy travels in one direction in the form of a gravitational wave.  We normally say that black holes do not send radiation. And we are wrong. Black holes send gravitational waves. Gravitational waves are wave movement or radiation. And that means the black holes are bright gravitational objects.  If we can use water to illustrate the gravitational interaction we can say that gravitational waves push the surface tension out from the gravitational center. Then the other quantum fields push particles or objects into a black hole. The gravitational waves push energy out from the objects. And then the energy or quantum fields behind that object push them into the gravitational center.  The elementary particles are quantum fields or whisk-looking structures. If the gravitational wave is

The CEO of Open AI, Sam Altman said that AI development requires a similar organization as IAEA.

We know that there are many risks in AI development. And there must be something that puts people realize that these kinds of things are not jokes. The problem is how to take control of the AI development. If we think about international contracts regarding AI development. We must realize that there is a possibility that the contract that should limit AI development turns into another version of the Nuclear Non-Proliferation Treaty. That treaty didn't ever deny the escalation of nuclear weapons. And there is a big possibility that the AI-limitation contracts follow the route of the Nuclear Non-Proliferation Treaty.  The biggest problem with AI development is the new platforms that can run every complicated and effective code. That means the quantum computer-based neural networks can turn themselves more intelligent than humans. The AI has the ultimate ability to learn new things. And if it runs on the quantum-hybrid system that switches its state between binary and quantum states,