Skip to main content

Oletteko koskaan kuulleet DARPA:n salaperäisestä "Space Cruiser"-projektista?

X-37B
(Kuva I)


X-37B (Kuva I) on Pentagonin arvoituksellinen avaruussukkula, jonka juuret juontuvat kauan sitten unohtuneeseen ”Avaruusalukseen” tai "Avaruus-risteilijään" (Space Cruiser), jota yhteen aikaan mainostettiin yhtenä avaruussukkulan apuvälineistä, ja tuon salaperäisen ”avaruusaluksen” laukaisun piti olla oikeastaan tieteen sekä tekniikan riemuvoitto, ja mistään kovin mutkikaasta  tai käänteentekevästä välineestä ei kuitenkaan ollut kysymys, vaan ”avaruusaluksen” tai ”avaruus-risteilijän” (”Space Cruiser”) olemus olisi ollut lähinnä ”Mercury”-kapselin kehittyneempi versio, joka olisi käyttänyt nesteraketteja toimiakseen Maata kiertävällä radalla.  Sen piti kyetä operoimaan täysikokoisen avaruussukkulan rahtitilasta, ja Sukkula olisi vienyt tuon pienen avaruuslentokoneen avaruuteen.


Space Cruiser:in (Kuva II.) kaltainen väline olisi voinut hinata satelliitteja sukkulaan, sekä kuvata muita satelliitteja. ”Avaruus-risteilijä” olisi myös kyennyt sitten tuhoamaan vastapuolen satelliitteja raketeilla. Se olisi voitu laukaista myös jonkun hyvin korkealla lentävän rahtikoneen selästä. Tai sitten SR-71 ”Blackbird” olisi sitten voinut hinata sen hyvin korkealle, ja sitten nopeudella Mach 3,21 lähteä syöksymään kohti maata. Jolloin tuohon pieneen sukkulaan kiinnitetty köysi toimisi kuin linko, joka sinkoaa avaruus-risteilijän kiertoradalle SR-71:een liittyy myös eräs episodi, josta ei juuri koskaan olla puhuttu, missä selkään on joskus liitetty RPV eli pienikokoinen kauko-ohjattava tiedustelukone, joka sai nimen Lockheed D-21.(Kuva III) Tuota dronea voitaisiin käyttää myös tietenkin avaruussukkulan kiinnittämiseen SR-71:een.

DARPA:n "Space cruiser" 1980-luvulta
(Kuva II)



Kyseisellä koneella voitaisiin tehdä sellainen operaatio, missä esimerkiksi C-130 koneen selässä ilmaan nostettu avaruussukkula sitten voitaisiin vaihtaa SR-71:n hinaukseen, joka suorittaa sitten tarpeellisen lentoliikkeen, jolla X-37B voitaisiin laukaista ilman suurta rakettien aikaansaamaa näytelmää. Nimittäin rakettien käyttö tietenkin saattaa tuon pienen sukkulan sellaiseen asemaan, että se huomataan normaalisti, mutta toki sukkulalento voidaan peittää tällaisessa tapauksessa siten, että se asennetaan esimerkiksi Minuteman tai jonkun muun ohjuksen kärkeen, mikä aiheuttaa sitten kuitenkin sen, että joka ainoa maailman satelliitti kohdentaa siihen kameransa.


Jos SR-71 vetäisi sukkulan yläilmakehään, ja sitten sen vetovaijeria käytetään linkona, niin silloin on ongelmana se, että myös SR-71 tai sen seuraajan operaatioita varmasti seurataan, joten siksi ehkä C-130 toisi tuollaisen sukkulan koelento-alueelle. Minkä jälkeen pieni RPV siirtäisi hinausvaijerin tuohon pieneen sukkulaan. Jos halutaan käyttää juuri SR-71-konetta, niin silloin sen lentoradan pitää olla samanlainen, kuin mitä käytetään painottomuuskokeissa sekä astronauttien koulutuksessa.



Tuon jälkeen SR-71 sitten lähtee lentämään täydellä vauhdilla kohti taivasta, ja sitten kun se kääntyy syöksyyn lentoradan ylimmässä kohdassa, niin hinausköysi irrotetaan sukkulasta, joka samalla käynnistää rakettimoottorinsa, jotta se kykenisi nousemaan LEO:lle eli matalalle maata kiertävälle kiertoradalle. Tuolloin tuota pientä sukkulaa ei ehkä havaittaisi, vaan lentoa pidettäisiin normaalina koelentona. Eikä sitä osattaisi yhdistää LEO (Low Earth Orbiter) tehtäviin, ja sitten kun tuo kyseinen sukkula sitten olisi päässyt ballistiselle radalle, niin silloin siihen voitaisiin kiinnittää polttiainesäliö että tehtävämoduuli.


Se tarkoittaisi vain sitä, että tuohon sukkulaan olisi telakoitu rakettivaihe, tai sitten painavamman satelliitin alle asennettu vinssi sitten vetäisi sukkulan ylemmälle radalle. Tuolloin vetävän satelliitin vain pitäisi olla sukkulaa painavampi, ja vedettävän kappaleen pitää olla ilmakehän ulkopuolella, jotta tuo toiminta onnistuisi, koska tuolloin ilmanvastus muodostaa ongelman, mutta jos stationaariradalle ankkuroidaan riittävän painava satelliitti, niin se sitten ehkä kykenisi vetämään pienen avaruusaluksen kiertoradalle. Ja sen kiertoradan pitää olla sellainen, että tuo naru voidaan liittää sukkulaan, eli nopeuserojen pitää olla sen verran pienet, että kaapelin liittäminen onnistuu, ja myös se että kaapelin pitää olla vakaa, rajoittaa tuon välineen käytännön sovelluksia.
Lockheed SR-71 ja Lockheed D-21
(Kuva III)

Yksi X-37B:n etuja on nimenomaan sen kyky operoida näkymättömästi. Toisin sanoen se voidaan asentaa vaikka Trident-ohjuksen kärkeen, ja kuljettaa Ohio-luokan sukellusveneellä kauas merelle ennen kuin se laukaistaan kiertoradalle. Tuolloin noiden pienten sukkuloiden operaatioista ei saisi tietää kukaan muu kuin NASA, ja tuolloin laukaisu voidaan suorittaa niin, että sen väitetään olevan vain harjoitusammuntaa. Kuitenkin tuollainen pienoissukkula voidaan nostaa myös ilmapallolla Maan ilmakehän yläosiin, josta se voisi sitten lentää kohti kiertorataa omien rakettien nostamana, ja tuollaisella Mylarista valmistetulla täysin symmetrisellä vetykaasulla täytetyllä ilmapallolla voidaan sitten toteuttaa sellainen malli, että tuo sukkula aukaisisi sen jälkeen valtavan ”päivänvarjon”, joihin kohdistetaan laser-säteitä, joiden avulla tuota laitetta voidaan nostaa sitten kohti kiertorataa.

Tuolloin käytetään sellaista välinettä, joka tunnetaan nimellä LASER tai LASER DISK, mikä tarkoittaa oikeastaan eräänlaista alustaa, mikä nostetaan avaruuteen lasersäteen avulla. Tuolloin laserilla muodostetaan alustan alle kuuman ilmamassan muodostama patja, joka nostaa sitä kohti avaruutta. Kyseinen väline voisi tietenkin nostaa myös tuollaisen pienen sukkulan kiertoradalle, jos vain sen lämpölaajeneminen saadaan kuriin. Ja silloin mielenkiintoinen vaihtoehto olisi sitten käyttää valtavaa mylar-varjoa, joka keveytensä puolesta sopisi tuohon tehtävään. Jos laser suuntautuu tuon laitteen ohi, ja sen säteen tiellä sattuu olemaan jokin satelliitti, niin silloin tuon tekokuun tarina on ohi, koska laser vähintään tuhoaa sen kamerat. 


Laserilla tapahtuvan kiertoradalle nousun ongelmana on kappaleen lämpölaajeneminen, minkä takia sen koon pitää olla niin suuri, jotta lämpöenergia sitten jakaantuisi laajemmalle alueelle, joka sitten pienentää aluksen lämpötilaa, ja kun tuo alus on kiertoradalla, niin tämä varjo voidaan vetää sisään, mikä tapahtuu paljon helpommin kuin maan ilmakehässä koska siellä avaruudessa ei ole kaasua, mikä häiritsee tuon varjon vetämistä esimerkiksi johonkin putkimaiseen säiliöön. Ja mylarin etuna muihin materiaaleihin nähden on se, että tuosta kalvosta voidaan tehdä äärettömän suuri sekä samalla hyvin kevyt. Sama ilmiö muuten tekee suurten putkirakenteiden hitsaamisesta hiukan hankalaa, ja siksi myös tuo lautanen, joka ottaa lasersäteet vastaan pitää olla erittäin suurikokoinen.





Comments

Popular posts from this blog

The LK-99 could be a fundamental advance even if it cannot reach superconductivity in 400K.

The next step in superconducting research is that LK-99 was not superconducting at room temperature. Or was it? The thing is that there is needed more research about that material. And even if it couldn't reach superconductivity in 400K that doesn't mean that material is not fundamental. And if LK-99 can maintain its superconductivity in 400K that means a fundamental breakthrough in superconducting technology.  The LK-99 can be hype or it can be the real thing. The thing is, anyway, that high-voltage cables and our electric networks are not turning superconducting before next summer. But if we can change the electric network to superconducting by using some reasonable material. That thing can be the next step in the environment. Superconductors decrease the need to produce electricity. But today cooling systems that need lots of energy are the thing that turn superconductors that need low temperatures non-practical for everyday use.  When the project begins there is lots of ent

Black holes, the speed of light, and gravitational background are things that are connecting the universe.

 Black holes, the speed of light, and gravitational background are things that are connecting the universe.  Black holes and gravitational waves: is black hole's singularity at so high energy level that energy travels in one direction in the form of a gravitational wave.  We normally say that black holes do not send radiation. And we are wrong. Black holes send gravitational waves. Gravitational waves are wave movement or radiation. And that means the black holes are bright gravitational objects.  If we can use water to illustrate the gravitational interaction we can say that gravitational waves push the surface tension out from the gravitational center. Then the other quantum fields push particles or objects into a black hole. The gravitational waves push energy out from the objects. And then the energy or quantum fields behind that object push them into the gravitational center.  The elementary particles are quantum fields or whisk-looking structures. If the gravitational wave is

The CEO of Open AI, Sam Altman said that AI development requires a similar organization as IAEA.

We know that there are many risks in AI development. And there must be something that puts people realize that these kinds of things are not jokes. The problem is how to take control of the AI development. If we think about international contracts regarding AI development. We must realize that there is a possibility that the contract that should limit AI development turns into another version of the Nuclear Non-Proliferation Treaty. That treaty didn't ever deny the escalation of nuclear weapons. And there is a big possibility that the AI-limitation contracts follow the route of the Nuclear Non-Proliferation Treaty.  The biggest problem with AI development is the new platforms that can run every complicated and effective code. That means the quantum computer-based neural networks can turn themselves more intelligent than humans. The AI has the ultimate ability to learn new things. And if it runs on the quantum-hybrid system that switches its state between binary and quantum states,