Skip to main content

New ultra-thin materials are opening the road to personal quantum devices.



The ultra-thin materials are key for making the new type of hybrid quantum processors. The new material is the forming of one atom layer. And they are consisting of the channels where qubits can travel or they can anneal. The quantum annealing systems can be the extremely stable carbon crystal. Between one atom thin graphene or silicon layers. The problem with quantum computers is that the input system for data is problematic. 

Those systems must calibrate to operate in the quantum world. Normal keyboards and screens are using binary computing. And the problem is that the qubit is not similar to a binary computer. When we think that the qubit is like a hard disk that travels in the quantum tube. We can model that the qubit is the electron that has a minimum of three states. And there are let's say 10 accelerator lines or nanotubes where those electrons are traveling. 

So that kind of quantum processor has 30 states in the qubit. The system can benefit the nano-scale binary processors very effectively. In that case, there would be the nanotechnical binary processor at both ends of the nanotube. That means that every binary processor will operate with one qubit line. And that thing makes it possible to make the new smaller-size quantum computer. 


Superconducting copper wires can act as qubits. The qubit's state can determine by the voltage level in the wires. 





1) The input routes to 

2)Binary processors that are loading data to qubits

3)The route of the qubit

4)Receiver and decoder system. That system turns qubits back to the binary system.

5)The binary output to the screens and other output devices. 


The diagram above introduces the quantum processor that has four accelerator lines. There can be four-state qubits that are traveling in the quantum channel. The fact is that there is the theoretical possibility to make those quantum channels by using normal copper wires. 

The thing is that portable quantum computers have fewer qubit layers or states than some super quantum systems. So when we are trying to compare quantum and binary computers we cannot expect that our laptops can make the same things as some supercomputer. 

The superconducting electric wires can transmit electricity in the form where it is sent to that wire. The boxes are at the ends of the system. Are binary processors. That transforms data flow that comes from binary system to quantum mode. And then another binary system will decode them to screens and other output devices. 


https://phys.org/news/2022-01-ultrathin-materials-pave-personal-sized-quantum.html

Image:) https://phys.org/news/2022-01-ultrathin-materials-pave-personal-sized-quantum.html


https://thoughtsaboutsuperpositions.blogspot.com/

Comments

Popular posts from this blog

Schrödinger's cat: and the limits of that idea.

"In quantum mechanics, Schrödinger's cat is a thought experiment concerning quantum superposition". (Wikipedia, Schrödinger's cat). But the same thing can use as model for many other thought experiments.  Sooner or later, or at least in the ultimate end of the universe, the Schrödinger's cat will turn into wave movement. The information that this cat involved exists but the cat does not exist in its material form. The information doesn't ever vanish. It just turns its shape.  We are all trapped in the universe and time. The universe is the space that is entirety to us. There are no confirmed other universities. But the multiverse is a logical continuum for the expanding galactic megastructures.  The problem with natural things is this. They are black and white. They exist or do not exist. Could there be something, that exists and not exists at the same time?  Scrödinger's cat is thinking experiment about case their cat is not dead or not alive. But in this...

The string theory offers a new way to calculate Pi.

"Scientists discovered a new series for pi through string theory research, echoing a 15th-century formula by Madhava. By combining Euler-Beta Functions and Feynman Diagrams, they modeled particle interactions efficiently. Credit: SciTechDaily.com" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Leap in Mathematics) People normally think that. The pi is the ratio of the circumference circle's circumference to the circle's diameter. The Pi is a mathematical constant 3.14159..., the endless decimal number. The Pi is interesting because developers can use that decimal number to make the encryption algorithms stronger.  The idea is that the encryptions program hides the message's original ASCII numbers by multiplicating those numbers with some decimal number. Or the system can add some numbers to those ASCII numbers.  "Aninda Sinha (left) and Arnab Saha (right). Credit: Manu Y" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Le...

There are always more than three actors in the real world.

"An international research team is advancing precision timekeeping by developing a nuclear clock using thorium isotopes and innovative laser methods, potentially transforming our understanding of physical constants and dark matter. (Artist’s concept.) Credit: SciTechDaily.com" (ScitechDaily, Unveiling the Thorium Nuclear Clock and Its Time-Twisting Secrets) From Three-body problem... There are no pure three-body systems in nature. There are always more than three components in the system. For making real three-body systems we must separate those three bodies from the environment. Otherwise, there are stable effects. But nobody can predict some effects like distant supernova explosions or sun eruptions.  And one of those things that affect all bodies is time. When radioactive materials decay. That affects the stability and symmetry of the object.  Energy levels affect the existence of things like neutrons. The thorium atom clocks are next-generation tools for time measurement....