Skip to main content

What is the problem with the Theory of General Relativity?



Is Einstein's Theory of General Relativity right or wrong? We have proven that Einstein's Theory of Special Relativity is right. But why somebody is suspicious in the case of the Theory of General Relativity? The Theory of General Relativity is made for fixing errors in the Theory of Special Relativity that doesn't mention the behavior of the objects in the curving spacetime. Those errors were noticed when observations of the trajectory of the planet Mercury have not to match with theoretical calculations. 

Albert Einstein introduced his Theory of Special Relativity in 1905. And the Theory of General Relativity was introduced in 1916 during WWI. The First World War was the worst moment to publish scientific papers. And after the war, the winners were jealous of those kinds of things. So we must remember that Einstein made his work in Germany. And the war covered that work that is called the most beautiful formula in the world E=Mc^2:


E=Mc^2 is

E=Energy

M= Mass

c= Speed of light


This was the short history of those very interesting theories that are the cornerstone of the modern way to think about the cosmos. 

But the thing that makes the Theory of General Relativity so interesting is that is not working with quantum mechanics or quantum physics. The quantum theory is compatible with the Theory of Special Relativity but not with the Theory of General Relativity. And that causes thoughts is there the missing piece between the quantum theory and the Theory of General Relativity. 

The problem with both theories of relativity and quantum theory is that they are meant for different scales. The theory of Special Relativity is handling the cases of the straight universe. And Theory of General Relativity handles the things that happen in the curving spacetime. So what makes those theories problematic? Maybe we are thinking the wrong way. Maybe there is an error that Einstein didn't notice. The thing is that we always try to make the models. 

Or is that error on the side of quantum theory. Does that theory notice the oscillation and vibration of the quantum particles? And if we are thinking that the quantum particles are not ever stable we might think that the quantum theory just doesn't notice that the place of the particles is changing all the time. And do those theories notice the wave-particle duality? 

That means the particles in the universe are not smooth. They are wrinkled or full of the protuberance. But when we are thinking about curving spacetime we must ask is there a limit for curving that is necessary when the Theory of General Relativity can connect with quantum theory. Or is there something missing between quantum theory and the Theory of General relativity? 

And in that case, we are using the most extreme cases in the universe. The fact is that spacetime is curving around all gravitational objects. But is it curving enough that the Theory of General Relativity can work with those reactions? If we are thinking that the gravitation causes the pothole in the spacetime, how deep that pothole should be that the Theory of General Relativity is turning dominant? 

Black holes are the most extreme objects in the universe. Even the light cannot escape from those gravitation centers. So is it possible that the gravitation of any other object in the universe is so weak, that the pothole around the object is not deep enough that the Theory of General Relativity is not fitting in the case? 


https://en.wikipedia.org/wiki/General_relativity

https://en.wikipedia.org/wiki/Special_relativity

https://en.wikipedia.org/wiki/Quantum_field_theory

https://en.wikipedia.org/wiki/Quantum_mechanics


https://kimmoswritings.blogspot.com/

Comments

Popular posts from this blog

Schrödinger's cat: and the limits of that idea.

"In quantum mechanics, Schrödinger's cat is a thought experiment concerning quantum superposition". (Wikipedia, Schrödinger's cat). But the same thing can use as model for many other thought experiments.  Sooner or later, or at least in the ultimate end of the universe, the Schrödinger's cat will turn into wave movement. The information that this cat involved exists but the cat does not exist in its material form. The information doesn't ever vanish. It just turns its shape.  We are all trapped in the universe and time. The universe is the space that is entirety to us. There are no confirmed other universities. But the multiverse is a logical continuum for the expanding galactic megastructures.  The problem with natural things is this. They are black and white. They exist or do not exist. Could there be something, that exists and not exists at the same time?  Scrödinger's cat is thinking experiment about case their cat is not dead or not alive. But in this...

The string theory offers a new way to calculate Pi.

"Scientists discovered a new series for pi through string theory research, echoing a 15th-century formula by Madhava. By combining Euler-Beta Functions and Feynman Diagrams, they modeled particle interactions efficiently. Credit: SciTechDaily.com" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Leap in Mathematics) People normally think that. The pi is the ratio of the circumference circle's circumference to the circle's diameter. The Pi is a mathematical constant 3.14159..., the endless decimal number. The Pi is interesting because developers can use that decimal number to make the encryption algorithms stronger.  The idea is that the encryptions program hides the message's original ASCII numbers by multiplicating those numbers with some decimal number. Or the system can add some numbers to those ASCII numbers.  "Aninda Sinha (left) and Arnab Saha (right). Credit: Manu Y" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Le...

There are always more than three actors in the real world.

"An international research team is advancing precision timekeeping by developing a nuclear clock using thorium isotopes and innovative laser methods, potentially transforming our understanding of physical constants and dark matter. (Artist’s concept.) Credit: SciTechDaily.com" (ScitechDaily, Unveiling the Thorium Nuclear Clock and Its Time-Twisting Secrets) From Three-body problem... There are no pure three-body systems in nature. There are always more than three components in the system. For making real three-body systems we must separate those three bodies from the environment. Otherwise, there are stable effects. But nobody can predict some effects like distant supernova explosions or sun eruptions.  And one of those things that affect all bodies is time. When radioactive materials decay. That affects the stability and symmetry of the object.  Energy levels affect the existence of things like neutrons. The thorium atom clocks are next-generation tools for time measurement....