Skip to main content

The new scaling quantum computers are coming.


Image 1)


The quantum entanglement in quantum computers must protect against outcoming effects. Quantum entanglement plays a key role in quantum computers. And the time that the entanglement stays determines the speed of the quantum computers. 

Photonic entanglement is one of the most promising things in quantum computers. There is the possibility to use two- or more layers of graphene. And then, between those layers, the system will create the quantum entanglement by using photons. 

That makes it possible to create quantum processors.  The data would input those quantum systems by using lasers.

Lasers can give the energy stress in the superpositioned and entangled photon pairs. And those photons can affect electromagnetic fields between graphene layers. 



Image 2) Diagram of QubiC prototype showing room-temperature electronics hardware. Credit: Gang Huang and Yilun/Berkeley Lab (Phys.Org/Open sourced control hardware for quantum computers)


The system senses those fields. One version is to install small silicon bites to graphene. 


And that thing can make the system able to detect differences in the brightness of the quantum entanglement. That makes the interaction between the quantum entanglement and the physical system.

The photonic crystals can also help to create long-term quantum entanglement. The speed of light can drop to zero in the photonic crystals. 

And that thing could help to create the stable quantum entanglement between photons. The photonic crystals can mount between graphene layers. And then, the system will use dropping of the speed of light while it creates the long-term quantum entanglement. 

Quantum entanglement is an interesting thing. It can use to transport information between two objects. But it can also use to make an identical copy of the data flow that travels in the quantum computers. So quantum entanglement can transmit data vertically and horizontally. 

Horizontal data transportation means that the quantum computer sends data between the data handling lines. That allows making the error detection in quantum computers. The idea is that error detection happens in quantum computers by simple things. 

The data will double in two or more data handling lines. Data handling lines could be independent quantum computers. Or they can be internal structures of processors. 

If those data handling lines are identical and they get identical results. There is the possibility that the answer is right. If the results of those lines are different.  There is the possibility that the answer is wrong. And if there are multiple different solutions in multiple data handling lines. The answer is wrong. 

The reason for multiple, different answers could be that the input is not correct. That means that the programmers should check the input and the code that controls the system. 

The new scaling quantum computers are more powerful than ever before. The AI-based operational systems make those systems faster than people imagine. And maybe quite soon there is a possibility to use quantum computers without binary computing level. The problem with quantum computers is that the input devices are using the binary system. That means the bottlenecks are the screens and keyboards. 

The new open-source systems can use to control quantum computers. Developing that system by using open-source methodology brings more qualified programmers to quantum computer projects. And the computer requires hardware and software for making successful operations. 



https://phys.org/news/2022-02-entanglement-scaling-quantum-machine.html


https://phys.org/news/2022-02-sourced-hardware-quantum.html


https://www.sci-nature.vip/2022/02/speed-of-light-could-be-dropped-to-zero.html?m=1


https://spectrum.ieee.org/topological-photonics-entanglement-protection


Image 1) https://phys.org/news/2022-02-entanglement-scaling-quantum-machine.html


Image 2)https://phys.org/news/2022-02-sourced-hardware-quantum.html


https://thoughtsaboutsuperpositions.blogspot.com/


Comments

Popular posts from this blog

The LK-99 could be a fundamental advance even if it cannot reach superconductivity in 400K.

The next step in superconducting research is that LK-99 was not superconducting at room temperature. Or was it? The thing is that there is needed more research about that material. And even if it couldn't reach superconductivity in 400K that doesn't mean that material is not fundamental. And if LK-99 can maintain its superconductivity in 400K that means a fundamental breakthrough in superconducting technology.  The LK-99 can be hype or it can be the real thing. The thing is, anyway, that high-voltage cables and our electric networks are not turning superconducting before next summer. But if we can change the electric network to superconducting by using some reasonable material. That thing can be the next step in the environment. Superconductors decrease the need to produce electricity. But today cooling systems that need lots of energy are the thing that turn superconductors that need low temperatures non-practical for everyday use.  When the project begins there is lots of ent

Black holes, the speed of light, and gravitational background are things that are connecting the universe.

 Black holes, the speed of light, and gravitational background are things that are connecting the universe.  Black holes and gravitational waves: is black hole's singularity at so high energy level that energy travels in one direction in the form of a gravitational wave.  We normally say that black holes do not send radiation. And we are wrong. Black holes send gravitational waves. Gravitational waves are wave movement or radiation. And that means the black holes are bright gravitational objects.  If we can use water to illustrate the gravitational interaction we can say that gravitational waves push the surface tension out from the gravitational center. Then the other quantum fields push particles or objects into a black hole. The gravitational waves push energy out from the objects. And then the energy or quantum fields behind that object push them into the gravitational center.  The elementary particles are quantum fields or whisk-looking structures. If the gravitational wave is

The CEO of Open AI, Sam Altman said that AI development requires a similar organization as IAEA.

We know that there are many risks in AI development. And there must be something that puts people realize that these kinds of things are not jokes. The problem is how to take control of the AI development. If we think about international contracts regarding AI development. We must realize that there is a possibility that the contract that should limit AI development turns into another version of the Nuclear Non-Proliferation Treaty. That treaty didn't ever deny the escalation of nuclear weapons. And there is a big possibility that the AI-limitation contracts follow the route of the Nuclear Non-Proliferation Treaty.  The biggest problem with AI development is the new platforms that can run every complicated and effective code. That means the quantum computer-based neural networks can turn themselves more intelligent than humans. The AI has the ultimate ability to learn new things. And if it runs on the quantum-hybrid system that switches its state between binary and quantum states,