Skip to main content

Wormholes can make the stable quantum channel in quantum computers.

Wormholes could make it possible to create stable quantum entanglement. But the problem is that nobody is made the quantum-size wormhole between quantum-size black and white holes. But virtualization of the wormhole is possible. 

Theoretically, things like wormholes between quantum-size black holes and white holes can make it possible to create the most powerful quantum computers that ever be possible to make. The problem is that aiming the direction of the quantum-size wormhole is difficult and the system requires enormous energy mass. 

The wormhole can aim by using superpositioned and entangled particles. And the creation of the required black hole can make by pressing the electron or proton in the middle of the ball-shaped chamber. That system can be possible somewhere in the future. 



Fullerene nanotubes inside maser-rays could use as virtual wormholes.


Fullerene nanotubes inside maser-rays could use as virtual wormholes. The maser ray protects the nanotube against outcoming radiation. And the quantum entanglement can form through that miniature fullerene channel. 

But the fullerene nanotubes are making it possible to make the virtual wormhole between the objects. The idea of the use of carbon nanotubes is that the quantum computer system basing on the idea that the carbon nanotube protects the qubit or quantum entanglement against the outcoming effects. The quantum entanglement can form through the nanotube. 

If researchers want to make it easy that energy in the virtual wormhole travels to one direction they can put Bose-Einstein condensate at another end of the nanotube. And that causes the effect where energy travels to the side of the Bose-Einstein condensate.

And if the maser ray will travel around that nanotube channel there is the possibility to make the virtual wormhole. In that virtual wormhole would be no crossing electromagnetic fields because maser rays that travel outside the nanotube deny access to natural quantum fields in that tube. That thing protects the qubit against the outcoming effect. 

The quantum computer could use the electrons that travel between laser impulses as the qubits. In that kind of system. Is easy to deny electromagnetic turbulence. The laser ray will aim at the electron. And it will push the electron through the nanotube or virtual wormhole. 


See the next terms: 

Black hole

Quantum entanglement 

White hole 

Wormhole

https://miraclesofthequantumworld.blogspot.com/

Comments

Popular posts from this blog

The LK-99 could be a fundamental advance even if it cannot reach superconductivity in 400K.

The next step in superconducting research is that LK-99 was not superconducting at room temperature. Or was it? The thing is that there is needed more research about that material. And even if it couldn't reach superconductivity in 400K that doesn't mean that material is not fundamental. And if LK-99 can maintain its superconductivity in 400K that means a fundamental breakthrough in superconducting technology.  The LK-99 can be hype or it can be the real thing. The thing is, anyway, that high-voltage cables and our electric networks are not turning superconducting before next summer. But if we can change the electric network to superconducting by using some reasonable material. That thing can be the next step in the environment. Superconductors decrease the need to produce electricity. But today cooling systems that need lots of energy are the thing that turn superconductors that need low temperatures non-practical for everyday use.  When the project begins there is lots of ent

Black holes, the speed of light, and gravitational background are things that are connecting the universe.

 Black holes, the speed of light, and gravitational background are things that are connecting the universe.  Black holes and gravitational waves: is black hole's singularity at so high energy level that energy travels in one direction in the form of a gravitational wave.  We normally say that black holes do not send radiation. And we are wrong. Black holes send gravitational waves. Gravitational waves are wave movement or radiation. And that means the black holes are bright gravitational objects.  If we can use water to illustrate the gravitational interaction we can say that gravitational waves push the surface tension out from the gravitational center. Then the other quantum fields push particles or objects into a black hole. The gravitational waves push energy out from the objects. And then the energy or quantum fields behind that object push them into the gravitational center.  The elementary particles are quantum fields or whisk-looking structures. If the gravitational wave is

The CEO of Open AI, Sam Altman said that AI development requires a similar organization as IAEA.

We know that there are many risks in AI development. And there must be something that puts people realize that these kinds of things are not jokes. The problem is how to take control of the AI development. If we think about international contracts regarding AI development. We must realize that there is a possibility that the contract that should limit AI development turns into another version of the Nuclear Non-Proliferation Treaty. That treaty didn't ever deny the escalation of nuclear weapons. And there is a big possibility that the AI-limitation contracts follow the route of the Nuclear Non-Proliferation Treaty.  The biggest problem with AI development is the new platforms that can run every complicated and effective code. That means the quantum computer-based neural networks can turn themselves more intelligent than humans. The AI has the ultimate ability to learn new things. And if it runs on the quantum-hybrid system that switches its state between binary and quantum states,