Skip to main content

The BCI (Brain-Computer Interface) is the next-generation user interface.



The technical remote view makes it possible to create BCI (Brain-Computer Interface) without any visible things like implanted microchips or electrode hats. The idea is that the radio wave is acting as a carrier wave. 

That carrier wave transmits the EEG to the antenna in a computer. The transmitter will be behind the head. And when the computer sends the receiving it will send the synthetic EEG to the receiver that is behind the user. 

The technical remote-view normally means that the radio wave is shot through the human brain. That radio wave acts as the carrier wave that carries the EEG to the computer. That system can use to make the next generation BCI systems that interact directly with the computers. 

That thing makes it possible to create a new type of simulated reality. Where the person can control virtual things in the memory of the computer.

But there is possible to connect these kinds of systems with physical robots. When a person controls a physical robot by using the BCI (Brain-Computer Interface) that thing is called "the enhanced reality". That means the person is controlling things like nanorobots or human-looking robots by using the EEG signals. 

When we are thinking of the movies like TRON. That kind of thing where people are living in a simulation might be partially true. If we want to create the BCI (Brain-Computer Interface) that doesn't require implanted microchips or some kind of electrode hat that transmits the EEG to the computer there is another way to connect brains to computers. The system can simply shoot the radio wave through the brain. 

And then that radio wave acts as a carrier that makes it the computer possible to observe the EEG of the human brain from remote distances. The EEG will transmit to the receiving antenna and then to the computer. And the system can interact with brains by sending the data from the computer through the brains to the receiver that is behind the user of this type of wireless BCI system. 


Scientists observed memories from human brains.


For the first time, scientists see what happens in brains. When people see things. Every single sensor that person has its neuron group. That neuron group stores the stimulus, that comes from a certain sensor. 

When a person gets some stimulus from the senses. That stimulus activates certain neuron groups in the brain. When a person hears some voice that has a connection with something that means something to the person that thing launches the emotional reaction. 

This kind of research is important for criminal investigators who must make sure that person tells truth. If somebody makes the faked police report of the violence the system sees that the memory neurons are activating. 

But because there is no emotional connection with the case. The faked story doesn't activate the neuron that is controlling the feelings. Also in the case of violence, the neurons that are handling the memories. Which are connected to touch are not activating. 

Reading memories from brains is theoretically a very simple thing. An idea of this system is that a certain image activates a certain group of neurons. Researchers must only show something like a spider or some other item to the person.

And then, the system sees what brain areas are activating during those things. The problem is, how to connect the certain neuron group with the certain memory? This kind of research is interesting. And maybe someday of tomorrow researchers can see other people's memories from the computer screen.

The research of the neurons. And especially memories make a revolution in learning and computing. Our skills are memories. If we know how memories are forming we can program our brains like computers. And that thing opens interesting visions for tomorrow. The knowledge of how our neurons are learning can use for creating new learning neural networks. And interconnect the internet with our brains. 


https://www.quantamagazine.org/scientists-watch-a-memory-form-in-a-living-brain-20220303/


https://en.wikipedia.org/wiki/Brain%E2%80%93computer_interface


https://thoughtsaboutsuperpositions.blogspot.com/


Comments

Popular posts from this blog

Schrödinger's cat: and the limits of that idea.

"In quantum mechanics, Schrödinger's cat is a thought experiment concerning quantum superposition". (Wikipedia, Schrödinger's cat). But the same thing can use as model for many other thought experiments.  Sooner or later, or at least in the ultimate end of the universe, the Schrödinger's cat will turn into wave movement. The information that this cat involved exists but the cat does not exist in its material form. The information doesn't ever vanish. It just turns its shape.  We are all trapped in the universe and time. The universe is the space that is entirety to us. There are no confirmed other universities. But the multiverse is a logical continuum for the expanding galactic megastructures.  The problem with natural things is this. They are black and white. They exist or do not exist. Could there be something, that exists and not exists at the same time?  Scrödinger's cat is thinking experiment about case their cat is not dead or not alive. But in this...

The string theory offers a new way to calculate Pi.

"Scientists discovered a new series for pi through string theory research, echoing a 15th-century formula by Madhava. By combining Euler-Beta Functions and Feynman Diagrams, they modeled particle interactions efficiently. Credit: SciTechDaily.com" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Leap in Mathematics) People normally think that. The pi is the ratio of the circumference circle's circumference to the circle's diameter. The Pi is a mathematical constant 3.14159..., the endless decimal number. The Pi is interesting because developers can use that decimal number to make the encryption algorithms stronger.  The idea is that the encryptions program hides the message's original ASCII numbers by multiplicating those numbers with some decimal number. Or the system can add some numbers to those ASCII numbers.  "Aninda Sinha (left) and Arnab Saha (right). Credit: Manu Y" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Le...

There are always more than three actors in the real world.

"An international research team is advancing precision timekeeping by developing a nuclear clock using thorium isotopes and innovative laser methods, potentially transforming our understanding of physical constants and dark matter. (Artist’s concept.) Credit: SciTechDaily.com" (ScitechDaily, Unveiling the Thorium Nuclear Clock and Its Time-Twisting Secrets) From Three-body problem... There are no pure three-body systems in nature. There are always more than three components in the system. For making real three-body systems we must separate those three bodies from the environment. Otherwise, there are stable effects. But nobody can predict some effects like distant supernova explosions or sun eruptions.  And one of those things that affect all bodies is time. When radioactive materials decay. That affects the stability and symmetry of the object.  Energy levels affect the existence of things like neutrons. The thorium atom clocks are next-generation tools for time measurement....