Skip to main content

A quantum neural computer can have antimatter in its brains.



A Quantum neural computer or 3D quantum neural network could be by using antiprotonic helium and positronium. The antiprotonic helium and positronium are extremely unstable things. That means the smallest mistakes can cause a devastating annihilation reaction. 

Antiprotonic helium can be the key to creating the 3D quantum network. The idea of this type of futuristic neural quantum computer is theoretically simple. The helium nucleus, along with antiprotons acts as the nucleus of the neurons. And the positronium when electron and positron are connected. Or protonium where antiproton and proton are orbiting each other acts as axons.

The problem is how to stabilize the positions of antiprotons and positronium? There is theoretically possible to use the magnetic fields to make that thing. The magnet pulls the antiproton away from the nucleus and anchors it to the right position. 

The power that the magnet uses must be the same. That keeps the antiproton at its trajectory. At the first, the information will transmit from antiproton to positronium. There the quantum entanglement will transfer it to the next antiprotonic helium. 

The positronium would be more suitable. Because antiproton and electrons don't cause annihilation if they touch each other. The data would transmit to that system by stressing helium nuclei by using electromagnetic radiation. The positronium would be easy to put in the right position. And then the superposition and entanglements are easier to form. 

But the practical solution of that kind of this kind of hybrid system is extremely hard to make. The needed mass of antiprotonic helium and positronium requires very much energy. And if something goes wrong the annihilation would be devastating. There is a theoretical possibility to make that kind of structure that hovers in its vacuum chamber in magnetic levitation. And the data can be input into that system by using electromagnetic radiation. 

The brightness of the EM-emission in that structure makes it possible that the sensors can observe the quantum structure and output the information. Maybe that kind of futuristic quantum computer can is put in the hologram. When the energy level of that system changes it causes interaction with the hologram. 

The positronium and protonium would be extremely good actors in quantum computers. They are easier to position at the right angle and if we want to stabilize those things. There is the possibility to use the magnets. That is put on both sides of the positronium or protonium. Then those magnets are put those antiparticle-particle pairs in the right position. And then the laser- or some other radiation would superposition and entangle those particles. 

That kind of system requires an extremely low temperature that eliminates the oscillation from the system. The thing is that the compact-size quantum computer can look like a little bit the electron microscope. The electron-positron pairs can be at both sides of that system. And they are trapped in the graphene net. 

The positrons must be at the middle of the holes in the graphene structure. The magnetic fields are keeping them hovering. That denies them to touch material. If positron touches the material that causes annihilation. Then the powerful EM-radiation would send lengthwise through that system. The fact is that this kind of system is extremely hard to create. And if there is a leak that causes powerful annihilation. 


https://en.wikipedia.org/wiki/Antiprotonic_helium


https://en.wikipedia.org/wiki/Positronium


https://en.wikipedia.org/wiki/Protonium

Comments

Popular posts from this blog

The LK-99 could be a fundamental advance even if it cannot reach superconductivity in 400K.

The next step in superconducting research is that LK-99 was not superconducting at room temperature. Or was it? The thing is that there is needed more research about that material. And even if it couldn't reach superconductivity in 400K that doesn't mean that material is not fundamental. And if LK-99 can maintain its superconductivity in 400K that means a fundamental breakthrough in superconducting technology.  The LK-99 can be hype or it can be the real thing. The thing is, anyway, that high-voltage cables and our electric networks are not turning superconducting before next summer. But if we can change the electric network to superconducting by using some reasonable material. That thing can be the next step in the environment. Superconductors decrease the need to produce electricity. But today cooling systems that need lots of energy are the thing that turn superconductors that need low temperatures non-practical for everyday use.  When the project begins there is lots of ent

Black holes, the speed of light, and gravitational background are things that are connecting the universe.

 Black holes, the speed of light, and gravitational background are things that are connecting the universe.  Black holes and gravitational waves: is black hole's singularity at so high energy level that energy travels in one direction in the form of a gravitational wave.  We normally say that black holes do not send radiation. And we are wrong. Black holes send gravitational waves. Gravitational waves are wave movement or radiation. And that means the black holes are bright gravitational objects.  If we can use water to illustrate the gravitational interaction we can say that gravitational waves push the surface tension out from the gravitational center. Then the other quantum fields push particles or objects into a black hole. The gravitational waves push energy out from the objects. And then the energy or quantum fields behind that object push them into the gravitational center.  The elementary particles are quantum fields or whisk-looking structures. If the gravitational wave is

The CEO of Open AI, Sam Altman said that AI development requires a similar organization as IAEA.

We know that there are many risks in AI development. And there must be something that puts people realize that these kinds of things are not jokes. The problem is how to take control of the AI development. If we think about international contracts regarding AI development. We must realize that there is a possibility that the contract that should limit AI development turns into another version of the Nuclear Non-Proliferation Treaty. That treaty didn't ever deny the escalation of nuclear weapons. And there is a big possibility that the AI-limitation contracts follow the route of the Nuclear Non-Proliferation Treaty.  The biggest problem with AI development is the new platforms that can run every complicated and effective code. That means the quantum computer-based neural networks can turn themselves more intelligent than humans. The AI has the ultimate ability to learn new things. And if it runs on the quantum-hybrid system that switches its state between binary and quantum states,