Skip to main content

The new quantum inventions can use to make more powerful quantum computers.




"Rydberg parity QAOA protocol. Arbitrarily connected optimization problems can be parity encoded in a regular geometry of neutral atoms trapped in, e.g., optical tweezers. After initializing the Rydberg quantum processor in an equal superposition state. "

"Generating variational wave functions by applying QAOA unitaries. Only requires local control of laser fields generating quasilocal four-qubit (square boxes) and single-qubit gates (disks). Credit: Physical Review Letters (2022). DOI: 10.1103/PhysRevLett.128.120503" (Phys.Org/Researchers develop quantum gate enabling investigation of optimization problems)


The main problem with a quantum computer is the input-output process. The computer or Turing's machine is useless without the ability to introduce information to the user. The quantum gate that is introduced above this text can make the communication between the quantum and binary systems more flexible. 


There are three main problems with quantum computers.


1) How the system can transfer data between quantum and binary systems. That ability is required is that screens and keyboards are using binary systems. The quantum computer is used through binary systems that input and output data in and from the quantum systems. 

2) Quantum computers are sensitive against outcoming effects like electromagnetic radiation. And even gravitational waves can disturb the quantum system. 

3) Quantum entanglement stays only a short time. The quantum entanglement stays for about ten seconds. After that, the system must reform that thing. 


That's why data must store in fast-operating quantum memory units until it can be driven back to a re-adjusted quantum system. Without that ability, quantum computers cannot handle long-term calculations. 

Also, even if long-term quantum entanglement is possible. Data must be backup copied. The reason for breaking the quantum entanglement could be a sudden electromagnetic impact like an eruption of the sun. Or gravitational waves can break the quantum entanglement. 


So how the quantum computers can be easier to use? 


The single-photon source that paves the way for quantum encryption is an interesting tool. That thing makes it possible to make quantum computing much easier. 

In that system, the data will load to single photons. That is launched into a quantum computer. And then those things will superposition and entangled. The single-photon source can use to transmit data to the single electrons. 

That kind of vision is interesting. And the single-photon source can make it possible to transmit data in qubit form over long distances. For long-distance data transmission. Those information carrier photons must cover against outside effects. And in that information photons will load into the laser ray. And then the laser ray will transfer them to the receiver. 

The lasers or photons can also derail electrons through graphene. The photon will push electrons between the graphene layers. Then the photonic interaction will pump the data from the electron to the photons that are the heart of quantum computers. And the data that those superpositioned and entangled photons are carrying will transfer back to electrons and then to graphene. 

The quantum gate that suppresses the data from the multi-qubit system to one qubit will make it possible to create better interaction between binary and quantum systems. The system benefits the Rydberg atoms in its operations. And that thing can make the quantum computer easier to use. The new quantum gate can help to optimize the communication between qubits and binary systems. 

There are many problems with quantum computers. One is noise or turbulence. Superpositioned and entangled photons are very sensitive against outcoming effects. And one way to increase the resistance of quantum computers is to increase the power of the quantum system.  

A Quantum computer's radiation will push disturbing radiation away from the computer. Another way is to use some heavier particles like protons or electrons for making quantum entanglement. 

The problem with those heavier particles is that they are reacting to magnetic fields. The new programmable quantum sensors also make it easier to separate the information from multi-stage qubits and transfer it to the binary system.  

So the quantum entanglement must protect by using powerful magnetic fields. Those kinds of magnetic fields are used in the fusion tests. And they can make the points of the heavy-particle quantum entanglement stable.



https://phys.org/news/2022-03-derails-electrons-graphene.html


https://phys.org/news/2022-03-quantum-gate-enabling-optimization-problems.html


https://phys.org/news/2022-03-single-photon-source-paves-quantum-encryption.html


https://phys.org/news/2022-03-technique-quantum-resilient-noise-boosts.html


Image) https://phys.org/news/2022-03-quantum-gate-enabling-optimization-problems.html


https://miraclesofthequantumworld.blogspot.com/

Comments

Popular posts from this blog

Schrödinger's cat: and the limits of that idea.

"In quantum mechanics, Schrödinger's cat is a thought experiment concerning quantum superposition". (Wikipedia, Schrödinger's cat). But the same thing can use as model for many other thought experiments.  Sooner or later, or at least in the ultimate end of the universe, the Schrödinger's cat will turn into wave movement. The information that this cat involved exists but the cat does not exist in its material form. The information doesn't ever vanish. It just turns its shape.  We are all trapped in the universe and time. The universe is the space that is entirety to us. There are no confirmed other universities. But the multiverse is a logical continuum for the expanding galactic megastructures.  The problem with natural things is this. They are black and white. They exist or do not exist. Could there be something, that exists and not exists at the same time?  Scrödinger's cat is thinking experiment about case their cat is not dead or not alive. But in this...

The string theory offers a new way to calculate Pi.

"Scientists discovered a new series for pi through string theory research, echoing a 15th-century formula by Madhava. By combining Euler-Beta Functions and Feynman Diagrams, they modeled particle interactions efficiently. Credit: SciTechDaily.com" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Leap in Mathematics) People normally think that. The pi is the ratio of the circumference circle's circumference to the circle's diameter. The Pi is a mathematical constant 3.14159..., the endless decimal number. The Pi is interesting because developers can use that decimal number to make the encryption algorithms stronger.  The idea is that the encryptions program hides the message's original ASCII numbers by multiplicating those numbers with some decimal number. Or the system can add some numbers to those ASCII numbers.  "Aninda Sinha (left) and Arnab Saha (right). Credit: Manu Y" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Le...

There are always more than three actors in the real world.

"An international research team is advancing precision timekeeping by developing a nuclear clock using thorium isotopes and innovative laser methods, potentially transforming our understanding of physical constants and dark matter. (Artist’s concept.) Credit: SciTechDaily.com" (ScitechDaily, Unveiling the Thorium Nuclear Clock and Its Time-Twisting Secrets) From Three-body problem... There are no pure three-body systems in nature. There are always more than three components in the system. For making real three-body systems we must separate those three bodies from the environment. Otherwise, there are stable effects. But nobody can predict some effects like distant supernova explosions or sun eruptions.  And one of those things that affect all bodies is time. When radioactive materials decay. That affects the stability and symmetry of the object.  Energy levels affect the existence of things like neutrons. The thorium atom clocks are next-generation tools for time measurement....