Skip to main content

There are two ways to make quantum systems exchange information.



The first method is to raise the energy level of the particles and make them resonate with the same frequency. Another method is to use two connector particles and use a very low energy level as a medium that transmits information between the systems. 

The problem with quantum communication is simple how to adjust those systems in the same frequency. Above this text is Maurits Escher's painting "Waterfall". And that thing can introduce one of the biggest problems with the quantum system. 

If we want to change information between two towers of that system, we must adjust those towers in the same frequency. And then make the quantum entanglement between those towers. 

Because those towers are part of the same quantum system, there is the possibility to make those crystals resonate and exchange information. But then we can think that the actor that sends information will throw the information from another tower to the next there is the possibility that the information transmitted will miss that receiver tower. 

There would be outcoming energy that destroys the resonation. And that thing makes information go somewhere else it should. 

We always think that information must travel through the system from upward. In that way, system operators would rise the energy level of the quantum participants of the communication. And that thing requires very high accuracy. 

The quantum entanglement and superposition are like a bridge between those towers. In that case, the energy level of those towers will rise to the same level. And then the material or elementary particles will put to resonate with the same frequency. Then the sender side of the superpositioned quantum entanglement will rise to a higher level. 

And that makes the information flow. When the energy level of quantum entanglement rises to the same level, the radiation that the sides of that quantum entanglement will break the entirety by pushing those superpositioned and entangled particles away. That's why the quantum entanglement can stay only a short time. 


The low-energy communication model. 


But there is another way to think about quantum communication. If the system wants to transmit information between those towers it can use four actors in that process. The first actor can drop the information to the second actor. 

That stands at the quantum structure's base floor or base energy level. Then that actor transfer information to the actor that is below the second tower. And the third actor will drop the wire and pull that message or information up to the second or receiving tower. 

Or airflow or energy that is driven behind (or below) that particle. Rises information to the particle at the top of receiving tower. 

There is needed two actors on the ground floor is simple. The system must drive information under the receiving tower. So that's why there needed two actors. And the receiving actor's energy level must be lower. 

This thing is called under-energetic communication. In that version of the communication, the system falls information to the lowest possible energy level. The system drives information to the Bose-Einstein condensate. 

Then that condensate will transfer information to the 2D quasiparticle. And then the laser ray will drive behind that quasiparticle and that makes the information travel from the quasiparticle to the top of the receiving tower to a particle that is waiting for the information. 

The thing that makes this process difficult is the complexity of the system. It's difficult to find the receiving tower in complex systems. Adjusting those systems is very hard. The information transporter must find the right route to the receiving tower. And that is very difficult. The route can be a series of particles that resonate with the same frequency but the energy level turns lower all the time. 



Comments

Popular posts from this blog

Schrödinger's cat: and the limits of that idea.

"In quantum mechanics, Schrödinger's cat is a thought experiment concerning quantum superposition". (Wikipedia, Schrödinger's cat). But the same thing can use as model for many other thought experiments.  Sooner or later, or at least in the ultimate end of the universe, the Schrödinger's cat will turn into wave movement. The information that this cat involved exists but the cat does not exist in its material form. The information doesn't ever vanish. It just turns its shape.  We are all trapped in the universe and time. The universe is the space that is entirety to us. There are no confirmed other universities. But the multiverse is a logical continuum for the expanding galactic megastructures.  The problem with natural things is this. They are black and white. They exist or do not exist. Could there be something, that exists and not exists at the same time?  Scrödinger's cat is thinking experiment about case their cat is not dead or not alive. But in this...

The string theory offers a new way to calculate Pi.

"Scientists discovered a new series for pi through string theory research, echoing a 15th-century formula by Madhava. By combining Euler-Beta Functions and Feynman Diagrams, they modeled particle interactions efficiently. Credit: SciTechDaily.com" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Leap in Mathematics) People normally think that. The pi is the ratio of the circumference circle's circumference to the circle's diameter. The Pi is a mathematical constant 3.14159..., the endless decimal number. The Pi is interesting because developers can use that decimal number to make the encryption algorithms stronger.  The idea is that the encryptions program hides the message's original ASCII numbers by multiplicating those numbers with some decimal number. Or the system can add some numbers to those ASCII numbers.  "Aninda Sinha (left) and Arnab Saha (right). Credit: Manu Y" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Le...

There are always more than three actors in the real world.

"An international research team is advancing precision timekeeping by developing a nuclear clock using thorium isotopes and innovative laser methods, potentially transforming our understanding of physical constants and dark matter. (Artist’s concept.) Credit: SciTechDaily.com" (ScitechDaily, Unveiling the Thorium Nuclear Clock and Its Time-Twisting Secrets) From Three-body problem... There are no pure three-body systems in nature. There are always more than three components in the system. For making real three-body systems we must separate those three bodies from the environment. Otherwise, there are stable effects. But nobody can predict some effects like distant supernova explosions or sun eruptions.  And one of those things that affect all bodies is time. When radioactive materials decay. That affects the stability and symmetry of the object.  Energy levels affect the existence of things like neutrons. The thorium atom clocks are next-generation tools for time measurement....