Skip to main content

The compact electron accelerator is possible to make by using laser light.


"An image from a simulation in which a laser pulse (red) drives a plasma wave, accelerating electrons in its wake. The bright yellow spot is the area with the highest concentration of electrons. In an experiment, scientists used this technique to accelerate electrons to nearly the speed of light over a span of just 20 centimeters. Credit: Bo Miao/IREAP" (Phys.org/Compact electron accelerator reaches new speeds with nothing but light)


By pushing electrons by using laser light is possible to accelerate them to the 99.99999993% speed of light. That thing means that those laser-based accelerators can replace magnetic accelerators very fast. 

The laser accelerators can make it possible to accelerate particles by using photons. And that thing makes it easier to make compact accelerated systems. Which are not depending the magnetic field. 

The idea of the photon-electron accelerator comes from the futuristic interstellar photonic rocket. The specific impulse of a photon rocket same as the speed of light. But the thrust is very poor. The medium between photon and ion rockets is the cathode engine. 

In that system, the accelerator will accelerate electrons for making a better thrust. If researchers can make that acceleration by using photons. That thing makes those electron engines more compact than using traditional particle accelerators. 

The photonic accelerator is one of the most brilliant inventions in the world of quantum. The laser rays or photons can transport electrons through the air. And that thing makes those systems suitable for transporting data in quantum computers. 

The system that accelerated electrons used the most powerful X-ray bursts in the world. And this thing limits a little bit the use of that system. 

There is planned to create a one-kilometer long photonic accelerator that can rise the energy level of electrons to 13,5 gigaelectron volts. That thing can revolutionize many things like physics. 



Quantum tweezers are the tools that can revolutionize nanotechnology. 

Quantum lensing is quite a similar phenomenon to gravitational lensing. But in the quantum lens, quantum field as an example electrons turn the direction of light waves. So even if the image above this part of the text originally introduced gravitational lensing. But it also fits for introducing quantum lensing. That phenomenon can use for the thing called quantum tweezers. 

Laser says can act as the photonic billiard stick. That photonic billiard stick can move electrons and other particles in the vacuum chamber. But quantum lensing can make that thing more accurate. 

Quantum lensing is a phenomenon where the atoms or subatomic particles' quantum fields are turning the direction of photons. Chancing that photon's distance from the beginning point of those light tweezers is possible to change our tweezers open or are they closed. If those quantum tweezers work right, that makes it possible to manipulate bonds between atoms in molecules. That thing can revolutionize nanotechnology. 

Electrons at hyper-high energy levels can make the quantum version of gravitational lensing possible. In that version photons or light waves can be shot through the quantum field of that electron. That thing can make it possible to create quantum-light tweezers. This can use to move things like single protons. 


https://phys.org/news/2022-09-compact-electron.html


Image 1: https://phys.org/news/2022-09-compact-electron.html


Image 2: https://en.wikipedia.org/wiki/Gravitational_microlensing


https://miraclesofthequantumworld.blogspot.com/


Comments

Popular posts from this blog

The LK-99 could be a fundamental advance even if it cannot reach superconductivity in 400K.

The next step in superconducting research is that LK-99 was not superconducting at room temperature. Or was it? The thing is that there is needed more research about that material. And even if it couldn't reach superconductivity in 400K that doesn't mean that material is not fundamental. And if LK-99 can maintain its superconductivity in 400K that means a fundamental breakthrough in superconducting technology.  The LK-99 can be hype or it can be the real thing. The thing is, anyway, that high-voltage cables and our electric networks are not turning superconducting before next summer. But if we can change the electric network to superconducting by using some reasonable material. That thing can be the next step in the environment. Superconductors decrease the need to produce electricity. But today cooling systems that need lots of energy are the thing that turn superconductors that need low temperatures non-practical for everyday use.  When the project begins there is lots of ent

Black holes, the speed of light, and gravitational background are things that are connecting the universe.

 Black holes, the speed of light, and gravitational background are things that are connecting the universe.  Black holes and gravitational waves: is black hole's singularity at so high energy level that energy travels in one direction in the form of a gravitational wave.  We normally say that black holes do not send radiation. And we are wrong. Black holes send gravitational waves. Gravitational waves are wave movement or radiation. And that means the black holes are bright gravitational objects.  If we can use water to illustrate the gravitational interaction we can say that gravitational waves push the surface tension out from the gravitational center. Then the other quantum fields push particles or objects into a black hole. The gravitational waves push energy out from the objects. And then the energy or quantum fields behind that object push them into the gravitational center.  The elementary particles are quantum fields or whisk-looking structures. If the gravitational wave is

The CEO of Open AI, Sam Altman said that AI development requires a similar organization as IAEA.

We know that there are many risks in AI development. And there must be something that puts people realize that these kinds of things are not jokes. The problem is how to take control of the AI development. If we think about international contracts regarding AI development. We must realize that there is a possibility that the contract that should limit AI development turns into another version of the Nuclear Non-Proliferation Treaty. That treaty didn't ever deny the escalation of nuclear weapons. And there is a big possibility that the AI-limitation contracts follow the route of the Nuclear Non-Proliferation Treaty.  The biggest problem with AI development is the new platforms that can run every complicated and effective code. That means the quantum computer-based neural networks can turn themselves more intelligent than humans. The AI has the ultimate ability to learn new things. And if it runs on the quantum-hybrid system that switches its state between binary and quantum states,