Skip to main content

Can the charm or c quark explain why a photon has no mass?


Can the mass of charm quark or c quark open the road to the photonic mystery? Can the reason why the c-quark that is inside the proton can be heavier than the proton? The c quark is a very heavy particle. That means its energy level is very high. 

That causes that c boson sends radiation with very high power. That radiation or wave motion pushes other particles away from it. And c quark flows above the energy level of other particles. When c quark sends enough radiation its shape turns into another particle.  

So could the same thing cause that photon has no mass? In that model, the photon would be in so a high energy level that it also pushes other particles and wave motion away from it. If that thing is right. The radiation of photons is so high that it will send the impacting radiation away from it.  In that case, dominating radiation will blow other radiation away. And that makes it difficult to measure the mass of the object. 

Otherwise, photons can turn wave motion without warning. Sir Isaac Newton proved that light is at the same time wave motion and particle. In that model, the scattering effect will cause that when the light in wave motion or superstring form hits another superstring it can turn into a photon. 

And the same way when a photon hits another photon or superstring. It can turn back to wave motion. That thing is an interaction where energy travels between superstrings and particles depending on which side of the impact has a higher energy level. 

If the wave motion hits the wall with a certain energy level there is the possibility that the wave motion will transfer energy to material with extremely high power. But the impact area of that wave motion or superstring is so small that it cannot interact. Or it's hard to measure the interaction. 

The reason for that is when the superstring travels through the quantum field. That raises the energy level of that field but during that interaction, the superstring itself doesn't make changes to that energy level. So the energy travels out from the quantum field after the energy stress. Not during that stress. The energy flows away from the particle when there is no incoming energy. At that moment energy comes out from the field because the system attempts to reach the minimum energy level. 


https://anewtonsapple.blogspot.com/

Comments

Popular posts from this blog

The LK-99 could be a fundamental advance even if it cannot reach superconductivity in 400K.

The next step in superconducting research is that LK-99 was not superconducting at room temperature. Or was it? The thing is that there is needed more research about that material. And even if it couldn't reach superconductivity in 400K that doesn't mean that material is not fundamental. And if LK-99 can maintain its superconductivity in 400K that means a fundamental breakthrough in superconducting technology.  The LK-99 can be hype or it can be the real thing. The thing is, anyway, that high-voltage cables and our electric networks are not turning superconducting before next summer. But if we can change the electric network to superconducting by using some reasonable material. That thing can be the next step in the environment. Superconductors decrease the need to produce electricity. But today cooling systems that need lots of energy are the thing that turn superconductors that need low temperatures non-practical for everyday use.  When the project begins there is lots of ent

Black holes, the speed of light, and gravitational background are things that are connecting the universe.

 Black holes, the speed of light, and gravitational background are things that are connecting the universe.  Black holes and gravitational waves: is black hole's singularity at so high energy level that energy travels in one direction in the form of a gravitational wave.  We normally say that black holes do not send radiation. And we are wrong. Black holes send gravitational waves. Gravitational waves are wave movement or radiation. And that means the black holes are bright gravitational objects.  If we can use water to illustrate the gravitational interaction we can say that gravitational waves push the surface tension out from the gravitational center. Then the other quantum fields push particles or objects into a black hole. The gravitational waves push energy out from the objects. And then the energy or quantum fields behind that object push them into the gravitational center.  The elementary particles are quantum fields or whisk-looking structures. If the gravitational wave is

The CEO of Open AI, Sam Altman said that AI development requires a similar organization as IAEA.

We know that there are many risks in AI development. And there must be something that puts people realize that these kinds of things are not jokes. The problem is how to take control of the AI development. If we think about international contracts regarding AI development. We must realize that there is a possibility that the contract that should limit AI development turns into another version of the Nuclear Non-Proliferation Treaty. That treaty didn't ever deny the escalation of nuclear weapons. And there is a big possibility that the AI-limitation contracts follow the route of the Nuclear Non-Proliferation Treaty.  The biggest problem with AI development is the new platforms that can run every complicated and effective code. That means the quantum computer-based neural networks can turn themselves more intelligent than humans. The AI has the ultimate ability to learn new things. And if it runs on the quantum-hybrid system that switches its state between binary and quantum states,