Skip to main content

10 000 times quicker production speed will be a boost for medical nanorobots.



The 24-h process of stem cells attaching to the microrobot surface (top) and Cell staining results to identify cells attached to the microrobot surface (bottom). Credit: DGIST (Daegu Gyeongbuk Institute of Science and Technology) (Scitechdaily.com/10,000 Times Quicker: New Breakthrough Could Change the Field of Medical Microrobots)

Nanorobots are powerful tools. But the problem is how to control them and how to produce enough nanomachines. 

"There are many approaches to building microrobots with the goal of minimally invasive targeted precision treatment. The most popular of them is the ultra-fine 3D printing process known as the two-photon polymerization method, which triggers polymerization in synthetic resin by intersecting two lasers". (SciTechDaily.com/10,000 Times Quicker: New Breakthrough Could Change the Field of Medical Microrobots)

New production methods can increase microrobot production. And that can make medical nanorobots more common and effective. When the number of times when the nanorobots increases. Researchers can get more data and experience how to control those things. Microrobots are extremely powerful tools. 

They can carry medicals and things like stem cells to the right position in the human body. And they can also release medicines just at the right point in the human body. This thing makes it possible to create new types of medicals. Nanomachines can also remove tumors simply by cutting the cancer cells in pieces. But the problem is how to produce those systems. And another question is how to control those machines. 

DNA plasmids are a good tool for controlling organic nanomachines. When an organic nanorobot reaches the hostile cell there that system can simply push the enzyme fiber in that cell. And then that thing can destroy the targeted cells. In that kind of system, the fibers that it uses to move can equip by using some nutrients. That is only non-wanted cell use. The targeted cell will pull the nutrient inside it. 

And then that uncovers the enzyme that destroys the targeted cell. Or if the nanomachine is non-organic it can use kevlar fibers for that purpose. In that case, the kevlar fiber destroys the targeted cell. The abilities of nanomachines are limitless. But the problem is that they need new production methods. 

And another thing that is needed is a new thinking way. Building a large number of microchips and injecting them with bacteria is difficult. The DNA plasmid is a good tool for controlling the nano-size robot. But if somebody wants to create a chemical control code to control the miniature submarines that person must be careful. 

If there are some artifact base pairs. That thing can cause the nanorobot acts unexpectable. So researchers require more information so that they can make powerful and accurate tools for serving medical and other kinds of staff. 


https://scitechdaily.com/10000-times-quicker-new-breakthrough-could-change-the-field-of-medical-microrobots/


Images: https://scitechdaily.com/10000-times-quicker-new-breakthrough-could-change-the-field-of-medical-microrobots/


https://anewtonsapple.blogspot.com/

Comments

Popular posts from this blog

The LK-99 could be a fundamental advance even if it cannot reach superconductivity in 400K.

The next step in superconducting research is that LK-99 was not superconducting at room temperature. Or was it? The thing is that there is needed more research about that material. And even if it couldn't reach superconductivity in 400K that doesn't mean that material is not fundamental. And if LK-99 can maintain its superconductivity in 400K that means a fundamental breakthrough in superconducting technology.  The LK-99 can be hype or it can be the real thing. The thing is, anyway, that high-voltage cables and our electric networks are not turning superconducting before next summer. But if we can change the electric network to superconducting by using some reasonable material. That thing can be the next step in the environment. Superconductors decrease the need to produce electricity. But today cooling systems that need lots of energy are the thing that turn superconductors that need low temperatures non-practical for everyday use.  When the project begins there is lots of ent

Black holes, the speed of light, and gravitational background are things that are connecting the universe.

 Black holes, the speed of light, and gravitational background are things that are connecting the universe.  Black holes and gravitational waves: is black hole's singularity at so high energy level that energy travels in one direction in the form of a gravitational wave.  We normally say that black holes do not send radiation. And we are wrong. Black holes send gravitational waves. Gravitational waves are wave movement or radiation. And that means the black holes are bright gravitational objects.  If we can use water to illustrate the gravitational interaction we can say that gravitational waves push the surface tension out from the gravitational center. Then the other quantum fields push particles or objects into a black hole. The gravitational waves push energy out from the objects. And then the energy or quantum fields behind that object push them into the gravitational center.  The elementary particles are quantum fields or whisk-looking structures. If the gravitational wave is

The CEO of Open AI, Sam Altman said that AI development requires a similar organization as IAEA.

We know that there are many risks in AI development. And there must be something that puts people realize that these kinds of things are not jokes. The problem is how to take control of the AI development. If we think about international contracts regarding AI development. We must realize that there is a possibility that the contract that should limit AI development turns into another version of the Nuclear Non-Proliferation Treaty. That treaty didn't ever deny the escalation of nuclear weapons. And there is a big possibility that the AI-limitation contracts follow the route of the Nuclear Non-Proliferation Treaty.  The biggest problem with AI development is the new platforms that can run every complicated and effective code. That means the quantum computer-based neural networks can turn themselves more intelligent than humans. The AI has the ultimate ability to learn new things. And if it runs on the quantum-hybrid system that switches its state between binary and quantum states,