Skip to main content

Time reversal symmetries and space reflection are used to control quantum materials.

   

Time reversal symmetries and space reflection are used to control quantum materials.



Above this text is an image that introduces time symmetry. This kind of thing can also use to create the quantum-size black hole. When the energy is pumped to quantum entanglement. There is the possibility that the energy level between those particles rises to the level that forming the quantum-size black hole is possible. 

That thing can use to create the quantum channel or electromagnetic- or even gravitational wormhole (so-called "real" wormhole) between those objects. And those things can use to create a powerful and very effective communication channel for quantum computers and in long-range quantum communication. 

Quantum technology is coming. The difference between the quantum and nanomaterials is the size. Quantum materials are forming far smaller particles than nanomaterials. The idea is that by using wave movement the single atoms or quarks can move from one place to another one. So quantum technology affects subatomic particles or single atoms. 

Nanotechnology is forming of single molecules or atoms. And by using quantum technology that thing can make the parts of nanotechnology more accurate. If we are thinking possibility to make nanostructures. By using acetylene molecules and long carbon molecules. The acetylene molecules can position between carbon molecules, and that thing turns the molecule turn like a ladder. That kind of ladder-looking hydrocarbon molecule can store information. And it can use in the ROM (Read Only Memory)circuits as storing very complicated kernel programs. 

That thing can act as the frame for quantum machines. The thing is that quantum microchips and other things require extremely small systems. The ability to make the quantum entanglements means that single atoms or ions can locate precisely in the right position. 

But that kind of system requires extremely high accuracy. And one of the systems that require high accuracy positioning is quantum computers. In that system the electrons or photons that are put to superposition transmit data. The electron can position to WARP-bubble by loading it with a high power energy load. And that thing makes it travel faster than other ways. Another thing that makes quantum-size WARP-bubble an interesting, tool is that it allows full control of those qubits. 

Quantum entanglement has an effect over time. This thing makes that effect extremely interesting. There is a possibility to affect quantum entanglement by stressing it with high-accurate energy loads. In that case, the energy load will target the ends of quantum entanglement.

Or energy load will position to the energy channel between that superposition and entangled particle pair. The thing is that superpositioned and entangled particles can bring information to the observer faster than if the information is coming through the air. 

This kind of system is making it possible to move single photons or electrons on the layers. In the quantum world, the layer can be physical or it can be the electromagnetic field where the particles are hovering above the EM-field. 



https://scitechdaily.com/physicists-exploit-space-reflection-and-time-reversal-symmetries-to-control-quantum-materials/


Image:https://scitechdaily.com/physicists-exploit-space-reflection-and-time-reversal-symmetries-to-control-quantum-materials/


https://thoughtsaboutsuperpositions.blogspot.com/


Comments

Popular posts from this blog

Schrödinger's cat: and the limits of that idea.

"In quantum mechanics, Schrödinger's cat is a thought experiment concerning quantum superposition". (Wikipedia, Schrödinger's cat). But the same thing can use as model for many other thought experiments.  Sooner or later, or at least in the ultimate end of the universe, the Schrödinger's cat will turn into wave movement. The information that this cat involved exists but the cat does not exist in its material form. The information doesn't ever vanish. It just turns its shape.  We are all trapped in the universe and time. The universe is the space that is entirety to us. There are no confirmed other universities. But the multiverse is a logical continuum for the expanding galactic megastructures.  The problem with natural things is this. They are black and white. They exist or do not exist. Could there be something, that exists and not exists at the same time?  Scrödinger's cat is thinking experiment about case their cat is not dead or not alive. But in this...

The string theory offers a new way to calculate Pi.

"Scientists discovered a new series for pi through string theory research, echoing a 15th-century formula by Madhava. By combining Euler-Beta Functions and Feynman Diagrams, they modeled particle interactions efficiently. Credit: SciTechDaily.com" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Leap in Mathematics) People normally think that. The pi is the ratio of the circumference circle's circumference to the circle's diameter. The Pi is a mathematical constant 3.14159..., the endless decimal number. The Pi is interesting because developers can use that decimal number to make the encryption algorithms stronger.  The idea is that the encryptions program hides the message's original ASCII numbers by multiplicating those numbers with some decimal number. Or the system can add some numbers to those ASCII numbers.  "Aninda Sinha (left) and Arnab Saha (right). Credit: Manu Y" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Le...

There are always more than three actors in the real world.

"An international research team is advancing precision timekeeping by developing a nuclear clock using thorium isotopes and innovative laser methods, potentially transforming our understanding of physical constants and dark matter. (Artist’s concept.) Credit: SciTechDaily.com" (ScitechDaily, Unveiling the Thorium Nuclear Clock and Its Time-Twisting Secrets) From Three-body problem... There are no pure three-body systems in nature. There are always more than three components in the system. For making real three-body systems we must separate those three bodies from the environment. Otherwise, there are stable effects. But nobody can predict some effects like distant supernova explosions or sun eruptions.  And one of those things that affect all bodies is time. When radioactive materials decay. That affects the stability and symmetry of the object.  Energy levels affect the existence of things like neutrons. The thorium atom clocks are next-generation tools for time measurement....