Skip to main content

Superheavy, artificial elements can use for gamma- or X-ray stroboscopes. Or in extremely powerful nuclear reactors.

Superheavy, artificial elements can use for gamma- or X-ray stroboscopes. Or in extremely powerful nuclear reactors. 



There are many hypothetical places where synthetic elements can use. But the thing that limits their use is the short half-life. That thing means that those extremely heavy radioactive elements can store in particle accelerators or electromagnetic radiation. Which pushes those atoms to one piece will deny their splitting or natural fission of those atoms. 

But it all started when Technetium was first time produced in 1937 by Emilio Segrè (1905-1989) and Carlo Perrier (1886-1948). The first synthetic element in the world is Technetium. That element shows that there is possible to create synthetic elements. Like Dmitri Mendeev (1834-1907) predicted in 1871. Technetium is used as a gamma-ray source and for radioactive medical work.

The use of super-heavy elements is a very limited thing. The super heavy or synthetic elements are extremely short-living. Most of them are coming after Uranium except Technetium element number 43. Technetium is the first of synthetic elements in the world. Technetium is used in some sensors. As the radiation source. 

There is a long list of use of that synthetic radioactive element. The fact is Technetium is found in nature. It's the product of the natural fission of Uranium 238, or it's also in the giant stars. 

Plutonium is used in nuclear weapons. But it could also use in small and powerful nuclear reactors. There are small numbers of Plutonium in nature. But most of it is synthetically produced. 

All elements, which are heavier than Uranium are synthetic. Or are found in very small numbers in places like deep minings or heavy stars. Artificial radioactive elements and isotopes are made from other elements. By using neutron or ion bombardment. The researchers require a particle accelerator for creating the heaviest particles in the world. 

In those systems, the particle accelerator drives ionized elements together. And the heavy particle fusion creates new elements. Sometimes people are asked why Uranium 235 turns to heavier element Plutonium 239 during fission? 

The fact is that the element that turns to Plutonium 239 is Uranium 238 which catches one neutron during nuclear fission. So the Uranium 235 is impacting with neutrons the product of the fission are  Iodine-131, Cesium-137, and Strontium-90. The bombardment of Uranium 238 creates Plutonium 239. 

The super-heavy elements, like Oganesson, is the heaviest known element. It is predicted to be a noble gas. And the last in the periodic table of elements with the number 118 has half-time 0,69 ms. The thing is that this kind of very short-living radioactive element has one use. Those kinds of elements can use in X- or gamma-ray stroboscopes. 

Then that kind of element has an extremely short half-time is released to the front of the sensor it will send short-periodic gamma- or x-ray bursts. And those flashes can be used as gamma- or X-ray sources in stroboscopes that are detecting extremely short-period reactions. 

A thing that makes those particles so unstable is their extremely big atom weight. The oscillation in the nuclei of the atoms is so strong that the electron cores cannot keep protons and neutrons together. And that causes the effect where atoms are splitting. 

Sometimes is introduced an idea that increasing the electrons around the nuclei of those super heavy particles is making those particles more stable. Or in some other ideas, the powerful laser or other electromagnetic fields are used to push those Moscovium and Oganesson atoms and that pressure can stabilize them. 


Moscovium and "anti-gravity".



In that case, element 115 or Moscovium is used in the systems that can levitate over the ground. The system would use super-heavy elements for creating antimatter. But the thing is that those systems would be only theoretical use of those elements. 

The thing is that elements like Oganesson and Moscovium which is element 115, can be used in extremely small-size nuclear reactors. The system would use the particle accelerator for causing the time dilation which stores those elements for storing them. 

There are many stories about the use of especially element 115 in "anti-gravity" The fact is that the short half-time will make the use of those elements as a fuel in a nuclear reactor. But if the stabilization can be made those elements could give a very high power for the air- and spacecraft. 

The thing is that the element 115 can simply spray into the air. And then that short-living element can create the radiation that pushes the craft forward. When the element 115 will spray under the craft.  

There could be an antimatter collector. In that system, the beta-radiation will impact the gold leaf. And then that thing would turn at least part of those particles into antimatter. This kind of system would be very capable of orbital flights.  But also extremely difficult to make because of the short-half time of the used elements. So making that system is not impossible. But storing and producing that element is difficult. 



https://www.env.go.jp/en/chemi/rhm/basic-info/1st/02-02-03.html


https://science.howstuffworks.com/space/aliens-ufos/element-115.htm


https://ui.adsabs.harvard.edu/abs/2004AIPC..699.1230A/abstract


https://en.wikipedia.org/wiki/Dmitri_Mendeleev


https://en.wikipedia.org/wiki/Emilio_Segr%C3%A8


https://en.wikipedia.org/wiki/Moscovium


https://en.wikipedia.org/wiki/Oganesson


https://en.wikipedia.org/wiki/Plutonium


https://en.wikipedia.org/wiki/Technetium


https://en.wikipedia.org/wiki/Uranium


https://thoughtsaboutsuperpositions.blogspot.com/

Comments

Popular posts from this blog

Schrödinger's cat: and the limits of that idea.

"In quantum mechanics, Schrödinger's cat is a thought experiment concerning quantum superposition". (Wikipedia, Schrödinger's cat). But the same thing can use as model for many other thought experiments.  Sooner or later, or at least in the ultimate end of the universe, the Schrödinger's cat will turn into wave movement. The information that this cat involved exists but the cat does not exist in its material form. The information doesn't ever vanish. It just turns its shape.  We are all trapped in the universe and time. The universe is the space that is entirety to us. There are no confirmed other universities. But the multiverse is a logical continuum for the expanding galactic megastructures.  The problem with natural things is this. They are black and white. They exist or do not exist. Could there be something, that exists and not exists at the same time?  Scrödinger's cat is thinking experiment about case their cat is not dead or not alive. But in this...

The string theory offers a new way to calculate Pi.

"Scientists discovered a new series for pi through string theory research, echoing a 15th-century formula by Madhava. By combining Euler-Beta Functions and Feynman Diagrams, they modeled particle interactions efficiently. Credit: SciTechDaily.com" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Leap in Mathematics) People normally think that. The pi is the ratio of the circumference circle's circumference to the circle's diameter. The Pi is a mathematical constant 3.14159..., the endless decimal number. The Pi is interesting because developers can use that decimal number to make the encryption algorithms stronger.  The idea is that the encryptions program hides the message's original ASCII numbers by multiplicating those numbers with some decimal number. Or the system can add some numbers to those ASCII numbers.  "Aninda Sinha (left) and Arnab Saha (right). Credit: Manu Y" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Le...

There are always more than three actors in the real world.

"An international research team is advancing precision timekeeping by developing a nuclear clock using thorium isotopes and innovative laser methods, potentially transforming our understanding of physical constants and dark matter. (Artist’s concept.) Credit: SciTechDaily.com" (ScitechDaily, Unveiling the Thorium Nuclear Clock and Its Time-Twisting Secrets) From Three-body problem... There are no pure three-body systems in nature. There are always more than three components in the system. For making real three-body systems we must separate those three bodies from the environment. Otherwise, there are stable effects. But nobody can predict some effects like distant supernova explosions or sun eruptions.  And one of those things that affect all bodies is time. When radioactive materials decay. That affects the stability and symmetry of the object.  Energy levels affect the existence of things like neutrons. The thorium atom clocks are next-generation tools for time measurement....