Skip to main content

Quantum mechanics and artificial intelligence are used to model high-temperature chemical reactions.

   

 Quantum mechanics and artificial intelligence are used to model high-temperature chemical reactions. 



"Schematic of the bridging of the cold quantum world. And high-temperature metal extraction with machine learning". Credit: Rodrigo Ortiz de la Morena and Jose A. Garrido Torres/Columbia Engineering(SciTechDaily)


The chemical reactions are similar to the reactions in the quantum world. But the scale of those reactions is larger. And artificial intelligence can use to model reactions between high-temperature and low-temperature objects. Also, artificial intelligence can use to model how the reactions in the quantum world affect molecules? 

There are certain rules on how chemical bonds form or how they cut. When we are thinking about chemical bonds. They are like small-size feet or hands. That are connecting atoms. In the world of chemicals, everything has some kind of effect on the reaction. When the energy level of the components of the chemical reactions is chanced. 

That thing causes changes in the speed of reaction. By stressing chemicals with high accurate energy bursts like laser rays are possible to warm the molecules precisely to the right temperature. Also, the things like cooling other participate and warming others make it possible to adjust the dominating part of the reaction. 

There is possible to spray electrons or protons between molecules. And that is making it possible to adjust their ability to touch each other. If there is iron or some other magnetic chemical in the chemical compound. That thing means that magnetic fields affect those chemicals. 

The laser rays can be used to move single molecules and connect them to macro-molecules like fullerene chains. In those chains maybe 100 C-60 fullerene molecules are put to chains. And that thing forms the C-6000 molecule. The laser ray and ultrasound tweezers can use to put the single fullerene molecule to an extremely complicated structure. 


The fullerene molecule is acting the same way as a single carbon atom. And that thing makes it possible to connect them to similar but larger structures with single carbon atoms. So there is the possibility to make the carbon molecule structures there are thousands or even millions of carbon atoms. 

And basically, the chemical reactions are forming or cutting the bonds. And reconnect those bonds with other atoms. So the machine learning can collect data about the chemical and physical environment where some chemical reactions are created. And then those conditions can multiply with other reaction chambers. The thing is that many elements are affecting chemical reactions. 

Of course, catalyzation or inhibiting reactions. By using some other chemicals are an important thing. Things like protective gases like noble-gas layers. Or extremely high accurately calculated gas mixtures. Are things that make it possible to create a new types of chemical compounds, like complicated carbon structures that are needed for nanomachines. 

But also the physical conditions like radiation affect chemical reactions. The ionization, thermal or ionizing radiation have effects on chemical reactions. As well as things like does the reaction chamber moving which means that is connected to centrifuges. Or does the reaction happen in micro gravitation? Also, things like sunlight and magnetic fields affect chemical reactions. 


https://scitechdaily.com/quantum-mechanics-and-machine-learning-used-to-accurately-predict-chemical-reactions-at-high-temperatures/


Image: https://scitechdaily.com/quantum-mechanics-and-machine-learning-used-to-accurately-predict-chemical-reactions-at-high-temperatures/


https://interestandinnovation.blogspot.com/

Comments

Popular posts from this blog

Schrödinger's cat: and the limits of that idea.

"In quantum mechanics, Schrödinger's cat is a thought experiment concerning quantum superposition". (Wikipedia, Schrödinger's cat). But the same thing can use as model for many other thought experiments.  Sooner or later, or at least in the ultimate end of the universe, the Schrödinger's cat will turn into wave movement. The information that this cat involved exists but the cat does not exist in its material form. The information doesn't ever vanish. It just turns its shape.  We are all trapped in the universe and time. The universe is the space that is entirety to us. There are no confirmed other universities. But the multiverse is a logical continuum for the expanding galactic megastructures.  The problem with natural things is this. They are black and white. They exist or do not exist. Could there be something, that exists and not exists at the same time?  Scrödinger's cat is thinking experiment about case their cat is not dead or not alive. But in this...

The string theory offers a new way to calculate Pi.

"Scientists discovered a new series for pi through string theory research, echoing a 15th-century formula by Madhava. By combining Euler-Beta Functions and Feynman Diagrams, they modeled particle interactions efficiently. Credit: SciTechDaily.com" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Leap in Mathematics) People normally think that. The pi is the ratio of the circumference circle's circumference to the circle's diameter. The Pi is a mathematical constant 3.14159..., the endless decimal number. The Pi is interesting because developers can use that decimal number to make the encryption algorithms stronger.  The idea is that the encryptions program hides the message's original ASCII numbers by multiplicating those numbers with some decimal number. Or the system can add some numbers to those ASCII numbers.  "Aninda Sinha (left) and Arnab Saha (right). Credit: Manu Y" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Le...

There are always more than three actors in the real world.

"An international research team is advancing precision timekeeping by developing a nuclear clock using thorium isotopes and innovative laser methods, potentially transforming our understanding of physical constants and dark matter. (Artist’s concept.) Credit: SciTechDaily.com" (ScitechDaily, Unveiling the Thorium Nuclear Clock and Its Time-Twisting Secrets) From Three-body problem... There are no pure three-body systems in nature. There are always more than three components in the system. For making real three-body systems we must separate those three bodies from the environment. Otherwise, there are stable effects. But nobody can predict some effects like distant supernova explosions or sun eruptions.  And one of those things that affect all bodies is time. When radioactive materials decay. That affects the stability and symmetry of the object.  Energy levels affect the existence of things like neutrons. The thorium atom clocks are next-generation tools for time measurement....