Skip to main content

For the first time probe has touched the Sun.

 

 For the first time probe has touched the Sun. 




NASA Parker probe has been dive in the Sun. That probe used interesting technology that helped to keep it cool. There could be possible to make the probe dive even deeper by using a magnetic field that pushes the plasma away from the probe. That would decrease the interaction between the probe and the plasma that comes from the Sun. 

The reason why Parker was sent to its mission. Is that it should collect data from the solar wind. The solar wind is high-energetic plasma that can destroy spacecraft. But there is another reason why close contact with the Sun is needed. The mission of probes like Parker is to collect data for the fusion tests. The power source of the Sun is fusion reaction. And the close contact with the Sun is the thing that can help to model the conditions that are making fusion possible. 

In some visions, the probes like Parker can collect antimatter from the solar atmosphere. The probe would travel to the sun.  Then that antimatter collector dives deep into the corona. Then it could open the solar sail and solar wind can push the probe back to Earth. 

Antimatter production is extremely expensive. And the probe could create it by putting the beta particles of the solar wind impact with gold leaf. Antimatter can use in fusion reactors to start the fusion reaction. 





The antimatter is creating an extremely high energy load. And that energy can use for starting and maintaining fusion reactions. The antimatter can make annihilate with material around the plasma-ring at Tokamak-type reactors. And that energy dose can start a fusion reaction. And it can raise the temperature after certain periods. The use of antimatter is to boost the fusion reaction in the fusion reactors. 

When the fusion reactor will start to turn too cold small dose of antimatter can turn the temperature to the needed level. The problem with the fusion rector is that the needed temperature is higher than in the Sun's nucleus. In the fusion reactors, the pressure of the nucleus of the sun must compensate by rising temperature to so high level. That the heat replaces missing pressure.  

The use of antimatter is one of the answers to how to create enough energy for starting self-maintaining fusion. But the high price would limit the use of antimatter for that purpose. So antimatter can collect from space. 


https://scitechdaily.com/parker-solar-probe-for-the-first-time-in-history-a-spacecraft-has-touched-the-sun/


https://en.wikipedia.org/wiki/Tokamak


https://likeinterstellartravelingandfuturism.blogspot.com/


Comments

Popular posts from this blog

The LK-99 could be a fundamental advance even if it cannot reach superconductivity in 400K.

The next step in superconducting research is that LK-99 was not superconducting at room temperature. Or was it? The thing is that there is needed more research about that material. And even if it couldn't reach superconductivity in 400K that doesn't mean that material is not fundamental. And if LK-99 can maintain its superconductivity in 400K that means a fundamental breakthrough in superconducting technology.  The LK-99 can be hype or it can be the real thing. The thing is, anyway, that high-voltage cables and our electric networks are not turning superconducting before next summer. But if we can change the electric network to superconducting by using some reasonable material. That thing can be the next step in the environment. Superconductors decrease the need to produce electricity. But today cooling systems that need lots of energy are the thing that turn superconductors that need low temperatures non-practical for everyday use.  When the project begins there is lots of ent

Black holes, the speed of light, and gravitational background are things that are connecting the universe.

 Black holes, the speed of light, and gravitational background are things that are connecting the universe.  Black holes and gravitational waves: is black hole's singularity at so high energy level that energy travels in one direction in the form of a gravitational wave.  We normally say that black holes do not send radiation. And we are wrong. Black holes send gravitational waves. Gravitational waves are wave movement or radiation. And that means the black holes are bright gravitational objects.  If we can use water to illustrate the gravitational interaction we can say that gravitational waves push the surface tension out from the gravitational center. Then the other quantum fields push particles or objects into a black hole. The gravitational waves push energy out from the objects. And then the energy or quantum fields behind that object push them into the gravitational center.  The elementary particles are quantum fields or whisk-looking structures. If the gravitational wave is

The CEO of Open AI, Sam Altman said that AI development requires a similar organization as IAEA.

We know that there are many risks in AI development. And there must be something that puts people realize that these kinds of things are not jokes. The problem is how to take control of the AI development. If we think about international contracts regarding AI development. We must realize that there is a possibility that the contract that should limit AI development turns into another version of the Nuclear Non-Proliferation Treaty. That treaty didn't ever deny the escalation of nuclear weapons. And there is a big possibility that the AI-limitation contracts follow the route of the Nuclear Non-Proliferation Treaty.  The biggest problem with AI development is the new platforms that can run every complicated and effective code. That means the quantum computer-based neural networks can turn themselves more intelligent than humans. The AI has the ultimate ability to learn new things. And if it runs on the quantum-hybrid system that switches its state between binary and quantum states,