Skip to main content

Riemann and beyond

Riemann and beyond




"The real part (red) and the imaginary part (blue). Of the Riemann zeta function along with the critical line Re(s) = 1/2. The first non-trivial zeros can be seen at Im(s) = ±14.135, ±21.022, and ±25.011". (Wikipedia/Riemann hypothesis) (https://en.wikipedia.org/wiki/Riemann_hypothesis)


The thing is that Riemann's conjecture has been waiting for solving. And that thing is one of the things that are remarkable in the history of data science. We have left our data security for the "hands" of over 160 years old algorithms. And when Riemann created his famous conjecture. The thing is that he didn't have supercomputers. Or quantum computers in use. 

And that means that Riemann's conjecture just waits for solving. And non-trivial errors mean that the security of the entire Internet has been dangered. But Riemann's conjecture is one of the examples of the meanless things which have turned into remarkable things in history. Riemann's conjecture was the meanless thing when it was created. But computers turned it one of the most important things in history. 

The primary computers are useless if data is encrypted by using the quantum system. And the quantum systems can break the codes and security algorithms that are made by using primary computers. The thing is that the security algorithms can use so-called precise algorithms that will only slow the breaking process. 

The precise or high-accurate algorithms mean that every mark or Ascii code is encrypted separately by using individual quantum prime numbers. That thing is making the code-breaking process more difficult. But quantum computers can handle that situation very effectively. 

Another thing that was meanless when it was invented was quantum entanglement. Einstein's spooky effect in distance means that when the particles are connected. And they will put to oscillate with the same frequency. That means there is quantum lighting or string between particles. 

One thing that is important in quantum entanglement is that for making that thing successful the particles must superposition before that thing can make. The superposition means that the oscillation of the particles will be synchronized with the same frequency. 

Quantum computers require superpositioned and entangled particles. Those computers are millions of times more powerful than binary computers. And the thing is that those systems can break any code that is made by using binary computers. That means the data security of the Internet is gone until the next security algorithm is made. 


https://en.wikipedia.org/wiki/Riemann_hypothesis


https://thoughtsaboutsuperpositions.blogspot.com/


Comments

Popular posts from this blog

The LK-99 could be a fundamental advance even if it cannot reach superconductivity in 400K.

The next step in superconducting research is that LK-99 was not superconducting at room temperature. Or was it? The thing is that there is needed more research about that material. And even if it couldn't reach superconductivity in 400K that doesn't mean that material is not fundamental. And if LK-99 can maintain its superconductivity in 400K that means a fundamental breakthrough in superconducting technology.  The LK-99 can be hype or it can be the real thing. The thing is, anyway, that high-voltage cables and our electric networks are not turning superconducting before next summer. But if we can change the electric network to superconducting by using some reasonable material. That thing can be the next step in the environment. Superconductors decrease the need to produce electricity. But today cooling systems that need lots of energy are the thing that turn superconductors that need low temperatures non-practical for everyday use.  When the project begins there is lots of ent

Black holes, the speed of light, and gravitational background are things that are connecting the universe.

 Black holes, the speed of light, and gravitational background are things that are connecting the universe.  Black holes and gravitational waves: is black hole's singularity at so high energy level that energy travels in one direction in the form of a gravitational wave.  We normally say that black holes do not send radiation. And we are wrong. Black holes send gravitational waves. Gravitational waves are wave movement or radiation. And that means the black holes are bright gravitational objects.  If we can use water to illustrate the gravitational interaction we can say that gravitational waves push the surface tension out from the gravitational center. Then the other quantum fields push particles or objects into a black hole. The gravitational waves push energy out from the objects. And then the energy or quantum fields behind that object push them into the gravitational center.  The elementary particles are quantum fields or whisk-looking structures. If the gravitational wave is

The CEO of Open AI, Sam Altman said that AI development requires a similar organization as IAEA.

We know that there are many risks in AI development. And there must be something that puts people realize that these kinds of things are not jokes. The problem is how to take control of the AI development. If we think about international contracts regarding AI development. We must realize that there is a possibility that the contract that should limit AI development turns into another version of the Nuclear Non-Proliferation Treaty. That treaty didn't ever deny the escalation of nuclear weapons. And there is a big possibility that the AI-limitation contracts follow the route of the Nuclear Non-Proliferation Treaty.  The biggest problem with AI development is the new platforms that can run every complicated and effective code. That means the quantum computer-based neural networks can turn themselves more intelligent than humans. The AI has the ultimate ability to learn new things. And if it runs on the quantum-hybrid system that switches its state between binary and quantum states,