Skip to main content

Mikä meitä pelottaa supervoimakkaiden ydinaseiden testauksessa? Sekä mietteitä mustista aukoista aamun ratoksi


Castle-Romeo testin sienipilvi
kohoaa pilvien läpi 27.3.1954

Kun ajatellaan tilannetta, missä ilmakehässä räjäytetään vetypommi, jonka tulipallon lämpötila nousee useiiin miljardeihin celsiusasteisiin, niin silloin tietenkin on monilla ihmisillä mielessään sellainen asia, että mitä jos tuosta räjähdyspisteestä lähtee jokin saastepilvi etenemään asutuskeskuksia kohti. Kun puhutaan sellaisista multivaiheistetulla fuusiomekanismilla varustetuista FFF (Fissio Fuusio Fissio) räjähteistä, missä vetypommin litium tai mitä fuusiovaihetta nyt käytetäänkään on ympäröity luonnonuraanilla, jossa sitten tapahtuu toinen fissioräjähdys, kun fuusiossa vapautuvat neutronit muuttavat tuon luonnonuraani eli isotooppi U-238 atomit plutoniumiksi, niin silloin fuusiomateriaalin synnyttämä  tulipallo painuu kasaan uudelleen.

Tuo tehostaa fuusiota erittäin paljon, ja sen takia FFF-aseet ovat niin kauhean voimakkaita. Samoin sellainen rakenne missä fissiomateriaali on sijoitettu fuusiomateriaalin ympärille saa aikaan pienen tehonlisäyksen. "Tsar bomba" joka on maailman voimakkain koskaan räjäytetty ydinase räjähti sellaisella teholla, että se vastasi kaikkia toisessa maailmansodassa käytettyjä räjähteitä.

https://www.youtube.com/watch?v=RNYe_UaWZ3U

Tsar bomban kehittämä lämpötila on niin kova, että kokonainen järvi Novaja Zemlijalla muuttui sekunnissa höyryksi, ja paineaalto kiersi maapallon kolme kertaa. Se mitä tuolloin alettiin pelätä, on sellainen tila missä tuo valtavan voimakas räjähdys synnyttäisi ilmakehään singulariteetin eli mustan aukon, joka saattaisi muuttua vakaaksi, ja sitten maapallon kaasukehä imeytyisi sen kautta johonkin muualle. Tai kun puhutaan sellaisista nanokokoisista mustista aukoista, joiden koko olisi noin atomin ytimen luokkaa, niin silloin tietenkin tulee mieleen sellainen asia, että mitä jos tuo nanokokoinen "kvanttiaukko", kuten noita äärimmäisen pieniä mustia aukkoja kutsutaan alkaisi vetää ilmakehän atomeja ympärilleen, ja puristaa niitä kasaan, ja jos tuo kvanttiaukko muuttuisi stabiiliksi, niin silloin maapallon ilmakehään syttyisi tähti, joka saattaisi lopulta tuhota koko planeetan.

Toinen mahdollisuus olisi sellainen, että tuo aseen kehittämä valtava kuumuus saisi aikaan sellaisen ilmiön, missä ilmakehän typpi alkaisi yhtyä happeen, jolloin syntyy typpimonoksidia. Tuolloin ilmakehä ikäänkuin syttyisi tuleen tuon aseen kehittämän valtavan kuumuuden johdosta, ja silloin voisi käydä niin, että maapallon elämä päättyisi siihen. Kvanttiaukot eivät yleensä ole mitään erityisen pitkäikäisiä, mutta se että me olemme tunteneet tuon ilmiön vasta melko vähän aikaa varmasti aiheuttaa sen, että emme kykene ennustamaan noiden energiakeskittymien käyttäytymistä täysin.

Kvanttiaukot ovat olemassa, mutta ne ovat niin pieniä että niiden havainnointi on todella vaikeaa, ja kyse on pisteestä, mikä on pienempi kuin atomi. Mustien aukkojen synty kyllä tunnetaan. Ne syntyvät tilanteessa, missä tähti räjähtää supernovana tai sitten valtava ainepilvi romahtaa kasaan, jolloin se synnyttää kyllä ensin prototähden joka räjähtää. Räjähdyksessä syntyvä energia on niin voimakas, että avaruuteen ilmestyy "vakaaksi singulaariksi" kutsuttu ilmiö. Tuo ilmiö on sellainen missä tähden räjähtäessä syntyvä energia jää ikään kuin olemaan universumiin.

Ja tätä me kutsumme nimellä "musta aukko". Tuon takia musta aukko voidaan muodostaa vain johtamalla kappaleeseen sähkövirtaa, mutta kuten varmaan tiedämme, niin tuolla tavoiin voitaisiin muodostaa avaruuteen singulariteetti, minkä avulla voisimme matkustaa tähtiin, joko sen muodostaman madonreiän kautta tai käyttämällä tätä kappaletta painovoimalinkona. Tuollainen keinotekoinen musta aukko voitaisiin muodostaa voimalasatellittien avulla niin, että avaruuteen lähetetään radiomasereilla varustettuja satelliitteja, joiden avulla esimerkiksi johonkin teräskuulaan pumpataan sähköenergiaa radiaaltojen avulla niin, että tuon teräskuulan massa kasvaisi niin suureksi, että muodostuisi musta aukko, jota voisimme sitten hyödyntää esimerkiksi tähtien välisessä matkailussa.

Tai sitten jos madonreikää ei voitaisi hyödyntää alusten lähettämisessä kohti tähtiä  niin silloin sitä voidaan käyttää ainakin aurinkokunnan sisäiseen matkustamiseen. Syy miksi noita madonreikiä ei ehkä uskalleta hyödyntää on se, että kukaan ei tietäisi mitä sen toisella puolen on. Madonreikä on teoreettinen ilmiö, joka yhdistää kaksi universumin pistettä toisiinsa. Tämä Einstein-Rosenin siltana tunnettu ilmiö syntyy silloin, kun kaksi mustaa aukkoa alkaa värähdellä samalla taajuudella. Silloin niiden väliin muodostuu säie tai tunneli, josta käytetään nimeä "madonreikä".

https://www.youtube.com/watch?v=SLUzJeto0Wo

Sen kautta voidaan teoriassa matkustaa vaikka toiselle puolen universumia, ja sen olemassaoloa puoltaa se, että mikään tunnetuista mustista aukoista ei laajene. Sen takia voidaan olettaa, että noihin kohteisiin syöksyvä aine tulee myös jostain ulos. Mustien aukkojen erityispiirre on sellainen, että niihin syöksyvä kappale ylittää valon nopeuden, koska kaikki kappaleet putoavat massakeskipistettä kohti kappaleen pinnalla olevaa pakonopeutta vastaavalla nopeudella. Joten sen takia musta aukko kumoaa ikään kuin kosmisen nopeusrajoituksen. Mutta voidaanko tuota ilmiötä hyödyntää avaruusmatkailussa on toinen asia. Nimittäin jos astronautti syöksyisi mustaan aukkoon, niin silloin hänen aluksensa ikään kuin venyisi vuorovesivoimien vaikutuksesta valtavan pitkäksi, ja repeäisi palasiksi.

https://www.youtube.com/watch?v=_kxKTX_GH4k

Kun mietitään teoreettista mahdollisuutta matkustaa universumissa, niin tietenkin voidaan ajatella, että rakennetaan pallomainen avaruusalus, jonka ympärille asetetaan voimalasatelliitteja, ja sitten tuhon palloon pumpataan energiaa, jolloin se itse muuttuisi mustaksi aukoksi, ja tuolloin ihminen voisi sen avulla ehkä matkustaa toiseen galaksiin. Tällaisesta aluksesta olen joskus kirjoittanut, ja se on alunperin Carl Saganin ideoima. Hän esittelee sen kirjassaan "Ensimmäinen yhteys", jossa ihminen matkustaa tähtiin aluksella, johon pumpataan radioaaltojen avulla niin paljon massaa, että se muuttuu mustaksi aukoksi, ja jos me joskus alamme hyödyntää tuota ilmiötä avaruusmatkailussa, niin silloin voisimme tehdä matkoja universumissa niin, että kukaan ei oikeasti huomaisi ulkoapäin yhtään mitään.

marxjatalous.blogspot.fi

Comments

Popular posts from this blog

The LK-99 could be a fundamental advance even if it cannot reach superconductivity in 400K.

The next step in superconducting research is that LK-99 was not superconducting at room temperature. Or was it? The thing is that there is needed more research about that material. And even if it couldn't reach superconductivity in 400K that doesn't mean that material is not fundamental. And if LK-99 can maintain its superconductivity in 400K that means a fundamental breakthrough in superconducting technology.  The LK-99 can be hype or it can be the real thing. The thing is, anyway, that high-voltage cables and our electric networks are not turning superconducting before next summer. But if we can change the electric network to superconducting by using some reasonable material. That thing can be the next step in the environment. Superconductors decrease the need to produce electricity. But today cooling systems that need lots of energy are the thing that turn superconductors that need low temperatures non-practical for everyday use.  When the project begins there is lots of ent

Black holes, the speed of light, and gravitational background are things that are connecting the universe.

 Black holes, the speed of light, and gravitational background are things that are connecting the universe.  Black holes and gravitational waves: is black hole's singularity at so high energy level that energy travels in one direction in the form of a gravitational wave.  We normally say that black holes do not send radiation. And we are wrong. Black holes send gravitational waves. Gravitational waves are wave movement or radiation. And that means the black holes are bright gravitational objects.  If we can use water to illustrate the gravitational interaction we can say that gravitational waves push the surface tension out from the gravitational center. Then the other quantum fields push particles or objects into a black hole. The gravitational waves push energy out from the objects. And then the energy or quantum fields behind that object push them into the gravitational center.  The elementary particles are quantum fields or whisk-looking structures. If the gravitational wave is

The CEO of Open AI, Sam Altman said that AI development requires a similar organization as IAEA.

We know that there are many risks in AI development. And there must be something that puts people realize that these kinds of things are not jokes. The problem is how to take control of the AI development. If we think about international contracts regarding AI development. We must realize that there is a possibility that the contract that should limit AI development turns into another version of the Nuclear Non-Proliferation Treaty. That treaty didn't ever deny the escalation of nuclear weapons. And there is a big possibility that the AI-limitation contracts follow the route of the Nuclear Non-Proliferation Treaty.  The biggest problem with AI development is the new platforms that can run every complicated and effective code. That means the quantum computer-based neural networks can turn themselves more intelligent than humans. The AI has the ultimate ability to learn new things. And if it runs on the quantum-hybrid system that switches its state between binary and quantum states,