Skip to main content

Maybe quite soon, the new systems will allow the digital transfer of memories between people.


The new quantum memristors are making it possible to return the quantum and of course binary computer to the position where it was before the electricity was cut. The memristor or memory resistor is possible only at the quantum level. But there is the possibility that a large group of memristors can use, also the full- or nano-scale computers. There is the possibility to benefit memristors also in the full-scale computers. 

That thing can be made by connecting those full-scale systems with miniature or nano-size computers. The idea is that the nano-size system will store the space of the computers all the time. And if the electricity is cut those settings remain in the memory of the nano-size computer. And when the system will turn back on. The settings will return by using that nano-size system. So the system can continue its operations where it is left when the electricity is cut off. 

Theoretically, those miniature system returners can use also be in the memory chips that can install someday in the brain of people. Those little microchips can use to store things in synthetic memory cells. And if those memory units can continue their operations from the point where the electricity is cut. 

That thing allows the transfer of the lifetime memories of the person to the new body. So if we think that memories are the personality the ability to transfer memories between bodies is making people immortal. 



Researchers uncovered how long-term memories are stored. 

That thing is opening the fascinating ideas because all our skills are basing memories. So if we think that some person will learn some things. That thing is making it possible to scale the same skills between multiple people. 

The memories are stored in the EEG system or microchips. Which are at the right point of the head of the person. The EEG system can be the network below the hat. Or it can install surgically put between the dura mater and skull. And there is of course possible that nanomachines are transferring those microchips to the brain structure. 

Then those microchips can be read by using some kind of scanner. In the most suitable vision, the mobile telephone can read the memory of that EEG system by using BlueTooth. There is needed only the right application. 

So transferring memories to the computer memory would be as easy as traveling. By using public transport. The application just sends the signal to the microchips. And then, they send the EEG curves to the telephone.  And then those memories can send to other similar systems that are sending electric signals straight to the cortex. This thing can make a new revolution for education in both civilian and military sectors. 


https://en.wikipedia.org/wiki/Memristor


Image 1) 

https://scitechdaily.com/scientists-unveil-how-our-memories-are-stored-the-format-of-working-memory/


Image 2) 

https://spectrum.ieee.org/quantum-memristor



Comments

Popular posts from this blog

Schrödinger's cat: and the limits of that idea.

"In quantum mechanics, Schrödinger's cat is a thought experiment concerning quantum superposition". (Wikipedia, Schrödinger's cat). But the same thing can use as model for many other thought experiments.  Sooner or later, or at least in the ultimate end of the universe, the Schrödinger's cat will turn into wave movement. The information that this cat involved exists but the cat does not exist in its material form. The information doesn't ever vanish. It just turns its shape.  We are all trapped in the universe and time. The universe is the space that is entirety to us. There are no confirmed other universities. But the multiverse is a logical continuum for the expanding galactic megastructures.  The problem with natural things is this. They are black and white. They exist or do not exist. Could there be something, that exists and not exists at the same time?  Scrödinger's cat is thinking experiment about case their cat is not dead or not alive. But in this

The string theory offers a new way to calculate Pi.

"Scientists discovered a new series for pi through string theory research, echoing a 15th-century formula by Madhava. By combining Euler-Beta Functions and Feynman Diagrams, they modeled particle interactions efficiently. Credit: SciTechDaily.com" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Leap in Mathematics) People normally think that. The pi is the ratio of the circumference circle's circumference to the circle's diameter. The Pi is a mathematical constant 3.14159..., the endless decimal number. The Pi is interesting because developers can use that decimal number to make the encryption algorithms stronger.  The idea is that the encryptions program hides the message's original ASCII numbers by multiplicating those numbers with some decimal number. Or the system can add some numbers to those ASCII numbers.  "Aninda Sinha (left) and Arnab Saha (right). Credit: Manu Y" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Le

There are always more than three actors in the real world.

"An international research team is advancing precision timekeeping by developing a nuclear clock using thorium isotopes and innovative laser methods, potentially transforming our understanding of physical constants and dark matter. (Artist’s concept.) Credit: SciTechDaily.com" (ScitechDaily, Unveiling the Thorium Nuclear Clock and Its Time-Twisting Secrets) From Three-body problem... There are no pure three-body systems in nature. There are always more than three components in the system. For making real three-body systems we must separate those three bodies from the environment. Otherwise, there are stable effects. But nobody can predict some effects like distant supernova explosions or sun eruptions.  And one of those things that affect all bodies is time. When radioactive materials decay. That affects the stability and symmetry of the object.  Energy levels affect the existence of things like neutrons. The thorium atom clocks are next-generation tools for time measurement.