Skip to main content

The new methods can make compact GWD (Gravitational Wave Detectors) possible.


"The Kerr-enhanced optical spring method enhances gravitational wave detection, offering new insights into cosmic phenomena and neutron star structures. Credit: SciTechDaily.com" (ScitechDaily, Unlocking the Universe: Kerr-Enhanced Optical Springs for Next-Gen Gravitational Wave Detectors)



The next-generation gravity wave detectors can be more sensitive and compact than ever imagined. In some scenarios, the nano-size mirrors with as high a reflection as possible can create an optical structure. Where the laser ray's length is thousands of kilometers. This thing is quite hard to make. 

If researchers create that structure using mirrors that reflect 100%. The system can detect the brightness of laser rays. And when the gravity wave hits those laser rays, it changes their brightness. 

But the other thing is what if researchers can stretch light? In stretching light the length of the light surface is big. And that makes it possible to create a system. That can detect gravity waves


"Kerr-enhanced optical spring demonstrates tunable non-linearity, presenting potential applications for enhancing GWD sensitivity and in various optomechanical systems. Credit: Tokyo Tech" (ScitechDaily,Unlocking the Universe: Kerr-Enhanced Optical Springs for Next-Gen Gravitational Wave Detectors)


The Kerr-enhanced magneto-optical springs can make the next-generation gravity wave detectors (GWD)


But then we can imagine the case that the sensor uses the magneto-optical springs. In some ideas, the magneto-optical spinning structures can harvest the gravity waves, if they are sensitive enough. The problem is that gravity waves are so weak. Gravity waves must impact enough energy to the sensor that it can detect changes in its structure. 

The GWD sensors are the newest tools for the research universe. Those things offer the possibility of researching black hole's internal structures. 

The detectable gravity waves are forming in the black hole's event horizon. But their origin is far inside the event horizon. That means that black holes are like an onion of multiple internal gravity fields. 

All gravitational objects send gravity waves. Those things can also used to give information about the internal structures of other objects. But the problem is how to create GWD that has high enough accuracy. Gravity wave detectors are tools that give information about the most dominating force in the universe. 


Can we someday benefit from gravity waves as an energy source? 


The GWD sensors can also work as pathfinders for the systems that use gravity waves as an energy source. The sensor that measures gravitational waves harvests energy from those waves. Gravity waves can transfer energy to photons. Those things are interactions. And photons should also transfer energy to the gravity waves. 

So large-scale systems could use laser rays to capture gravity waves. Or gravity waves could transport energy to some lightweight, low-energy particles. And then laser rays can block the gravity waves. That thing makes those particles like free gluons or low-energy quarks deliver their extra energy. And maybe someday, we can make those gluon clouds. 


https://scitechdaily.com/unlocking-the-universe-kerr-enhanced-optical-springs-for-next-gen-gravitational-wave-detectors/


https://en.wikipedia.org/wiki/Kerr_effect


https://en.wikipedia.org/wiki/Magneto-optic_effect


https://en.wikipedia.org/wiki/Magneto-optic_Kerr_effect



Comments

Popular posts from this blog

Schrödinger's cat: and the limits of that idea.

"In quantum mechanics, Schrödinger's cat is a thought experiment concerning quantum superposition". (Wikipedia, Schrödinger's cat). But the same thing can use as model for many other thought experiments.  Sooner or later, or at least in the ultimate end of the universe, the Schrödinger's cat will turn into wave movement. The information that this cat involved exists but the cat does not exist in its material form. The information doesn't ever vanish. It just turns its shape.  We are all trapped in the universe and time. The universe is the space that is entirety to us. There are no confirmed other universities. But the multiverse is a logical continuum for the expanding galactic megastructures.  The problem with natural things is this. They are black and white. They exist or do not exist. Could there be something, that exists and not exists at the same time?  Scrödinger's cat is thinking experiment about case their cat is not dead or not alive. But in this

The string theory offers a new way to calculate Pi.

"Scientists discovered a new series for pi through string theory research, echoing a 15th-century formula by Madhava. By combining Euler-Beta Functions and Feynman Diagrams, they modeled particle interactions efficiently. Credit: SciTechDaily.com" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Leap in Mathematics) People normally think that. The pi is the ratio of the circumference circle's circumference to the circle's diameter. The Pi is a mathematical constant 3.14159..., the endless decimal number. The Pi is interesting because developers can use that decimal number to make the encryption algorithms stronger.  The idea is that the encryptions program hides the message's original ASCII numbers by multiplicating those numbers with some decimal number. Or the system can add some numbers to those ASCII numbers.  "Aninda Sinha (left) and Arnab Saha (right). Credit: Manu Y" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Le

There are always more than three actors in the real world.

"An international research team is advancing precision timekeeping by developing a nuclear clock using thorium isotopes and innovative laser methods, potentially transforming our understanding of physical constants and dark matter. (Artist’s concept.) Credit: SciTechDaily.com" (ScitechDaily, Unveiling the Thorium Nuclear Clock and Its Time-Twisting Secrets) From Three-body problem... There are no pure three-body systems in nature. There are always more than three components in the system. For making real three-body systems we must separate those three bodies from the environment. Otherwise, there are stable effects. But nobody can predict some effects like distant supernova explosions or sun eruptions.  And one of those things that affect all bodies is time. When radioactive materials decay. That affects the stability and symmetry of the object.  Energy levels affect the existence of things like neutrons. The thorium atom clocks are next-generation tools for time measurement.