Skip to main content

This quasar rewrites galactic rules.


"Researchers using the Chandra X-ray Observatory discovered that the supermassive black hole in quasar H1821+643 is less influential in controlling its surrounding gas and star formation than expected. (Artist’s concept.) Credit: SciTechDaily.com" (ScitechDaily, Defying Expectations: The Quasar That’s Rewriting Galactic Rules)



The quasar H1821+643 rewrites black holes and other material interactions in galaxies. The quasar H1821+643 interacts with its entirety, and that is a so-called dominating object. But dominance between that quasar end especially the supermassive black hole and its environment is lower. So the black hole doesn't dominate its environment as much as it predicted. 

This means that black holes' spin can cause an effect that black hole spins empty. The situation means that a black hole creates a small area around it that isolates it from the environment. In that model, there is sometimes a vacuum near a black hole that the black hole is not in contact with its material disk all the time. 

In some other models, the fast spin of a black hole affects the material energy level that material near the event horizon turns so hot, that it can affect the black hole's energy interaction. So high-energy plasma could cut or affect the black hole's gravitational interaction. 

All black holes have gravitational interaction. But the high-energy transition or material disk around the black hole also pushes material away from the black hole. Also, black holes relativistic energy ray transports energy out from black holes. A black hole's relativistic jet may involve a wormhole. 

And if that relativistic jet hits to object that is dense enough, that thing can even turn another object into a black hole by pressing it through its magnetic field. Understanding black holes and their shape allows us to understand things like the Big Bang. 

If dark matter is a so-called stable quasiparticle. That would revolutionize understanding of material and its form. So can those hypothetical stable quasiparticles exist near black holes? 

The black holes can also interact with dark matter. In modern models, black holes pull dark matter inside it. And that thing means that they should give us data about dark matter. Part of dark matter may be so-called quasi- or pseudoparticles. But there could be some, yet unknown particles. So the black holes can give tips on what kind of thing is dark matter. If so-called stable quasiparticles are possible, that could change our way of thinking about the material. 




What are black holes? 


What are black holes? They are shadows. When a gravitational field pulls something into the black hole it will not pull particles. It sends counter radiation to the electromagnetic field. The name of that radiation is the gravitational radiation. The gravitational radiation travels through the impacting electromagnetic fields. And that takes their energy out of them. That forms a lower energy area at the side of the gravity center. 

That means outcoming energy drives particles into the gravity center. The outcoming energy travels faster than the particle forming a quantum shadow at the side of the gravity center. That electromagnetic shadow pulls particles into the black hole. The thing that denies the gravitational effect is that somebody fills that shadow. If the system can fill that shadow it can break the gravity. 

This thing causes an idea, that a material's energy level has some kind of influence on gravity interaction. That can mean that the gravity effect is lower when an object's energy level is higher. The thing in this case is the high energy level will resist the gravitational interaction on the side of the gravity center. The idea is that the gravity waves have a very short wavelength. And they will travel through photons or other objects and electromagnetic radiation. And that thing takes those photon's energy levels to a lower level. So gravitation affects into gravitational center's environment. Not to particle. 

The idea is that opposite-traveling gravity waves take energy from incoming radiation. And that forms the gravity pool that pulls objects into the gravitational center. So the high-energy particle creates radiation or wave movement that makes it kick against the lower-energy particles in the gravitational pool. 

The idea is the same as in a river. Gravitation is like a river that transports particles with it. Energy travels to the gravitational center. And that makes the gravity center colder than its environment. The particle's energy level must be high enough that it can push against those particles that travel to the black hole. 

The thing that makes gravitation function is the shadow that forms at the gravity center's side. The outside energy will push the particle into the black hole. The thing that the particle must do is create so a high energy level that it can fill that shadow. 


https://scitechdaily.com/defying-expectations-the-quasar-thats-rewriting-galactic-rules/


https://en.wikipedia.org/wiki/Quasiparticle


Comments

Popular posts from this blog

The LK-99 could be a fundamental advance even if it cannot reach superconductivity in 400K.

The next step in superconducting research is that LK-99 was not superconducting at room temperature. Or was it? The thing is that there is needed more research about that material. And even if it couldn't reach superconductivity in 400K that doesn't mean that material is not fundamental. And if LK-99 can maintain its superconductivity in 400K that means a fundamental breakthrough in superconducting technology.  The LK-99 can be hype or it can be the real thing. The thing is, anyway, that high-voltage cables and our electric networks are not turning superconducting before next summer. But if we can change the electric network to superconducting by using some reasonable material. That thing can be the next step in the environment. Superconductors decrease the need to produce electricity. But today cooling systems that need lots of energy are the thing that turn superconductors that need low temperatures non-practical for everyday use.  When the project begins there is lots of ent

Black holes, the speed of light, and gravitational background are things that are connecting the universe.

 Black holes, the speed of light, and gravitational background are things that are connecting the universe.  Black holes and gravitational waves: is black hole's singularity at so high energy level that energy travels in one direction in the form of a gravitational wave.  We normally say that black holes do not send radiation. And we are wrong. Black holes send gravitational waves. Gravitational waves are wave movement or radiation. And that means the black holes are bright gravitational objects.  If we can use water to illustrate the gravitational interaction we can say that gravitational waves push the surface tension out from the gravitational center. Then the other quantum fields push particles or objects into a black hole. The gravitational waves push energy out from the objects. And then the energy or quantum fields behind that object push them into the gravitational center.  The elementary particles are quantum fields or whisk-looking structures. If the gravitational wave is

The CEO of Open AI, Sam Altman said that AI development requires a similar organization as IAEA.

We know that there are many risks in AI development. And there must be something that puts people realize that these kinds of things are not jokes. The problem is how to take control of the AI development. If we think about international contracts regarding AI development. We must realize that there is a possibility that the contract that should limit AI development turns into another version of the Nuclear Non-Proliferation Treaty. That treaty didn't ever deny the escalation of nuclear weapons. And there is a big possibility that the AI-limitation contracts follow the route of the Nuclear Non-Proliferation Treaty.  The biggest problem with AI development is the new platforms that can run every complicated and effective code. That means the quantum computer-based neural networks can turn themselves more intelligent than humans. The AI has the ultimate ability to learn new things. And if it runs on the quantum-hybrid system that switches its state between binary and quantum states,