Skip to main content

There are always more than three actors in the real world.



"An international research team is advancing precision timekeeping by developing a nuclear clock using thorium isotopes and innovative laser methods, potentially transforming our understanding of physical constants and dark matter. (Artist’s concept.) Credit: SciTechDaily.com" (ScitechDaily, Unveiling the Thorium Nuclear Clock and Its Time-Twisting Secrets)



From Three-body problem...


There are no pure three-body systems in nature. There are always more than three components in the system. For making real three-body systems we must separate those three bodies from the environment. Otherwise, there are stable effects. But nobody can predict some effects like distant supernova explosions or sun eruptions. 

And one of those things that affect all bodies is time. When radioactive materials decay. That affects the stability and symmetry of the object. 

Energy levels affect the existence of things like neutrons. The thorium atom clocks are next-generation tools for time measurement. In those systems advanced laser technology allows us to replace highly radioactive cesium by using less radioactive thorium. 


"Approximate trajectories of three identical bodies located at the vertices of a scalene triangle and having zero initial velocities. The center of mass, in accordance with the law of conservation of momentum, remains in place." (Wikipedia, Three-body problem)


The problem is that even quarks are not identical. There is an asymmetry in up and down quark's energy fields. There are also many other actors in nature, than those three components. 

Researchers can use safer atom clocks because there is no highly radioactive material. So if somebody steals that atom clock, there is no so big danger. The high-accurate navigation systems also require high-accurate time measurements.

And it will improve the ability to measure things like changes in gravity fields. Safer components allow them to make more atom clocks. And that makes it possible to make a more accurate network to measure time and gravity fields and their changes. 


"Quantum computers, utilizing versatile qubits, are at the forefront of solving complex optimization problems like the traveling salesman dilemma, traditionally plagued by computational inefficiency. Through rigorous mathematical analysis, researchers have demonstrated that quantum computing can fundamentally transform problem-solving, offering a more efficient polynomial increase in computation time compared to classical methods and yielding superior solutions." (ScitechDaily, Quantum Leap: Redefining Complex Problem-Solving)



To complex internally entangled three object problems. 


We see three-body problems everywhere. There are three quarks in baryons protons and neutrons. Those quarks moving around each other. But the problem is that those quarks are not alone. They interact with gluons and electrons. And that means there is a complex internal entangled three-body problem groups. 

The problem with three body problems is this. There are many more than three objects in the universe. So if we want to move the three-body or three-object problem into the real world we must realize that all other objects interact in natural systems. The second problem is that all four interactions participate in those interactions. 

Things like asteroid groups, interplanetary dust, ion flows, and other things like close and distant gravity effects and gravity field strengths affect three bodies. So multiple forces interact with those three bodies. And all forces are entireties. To predict the system's behavior, we must know all its participants. We know that the gravity field is not stable even on Earth. 

The internal and external forces interact with particles and particle groups. And even the weak force has a measurable effect if the interaction continues for a very long time. The other thing is that all particles that interact in the three. Object problem has a different force their gravity is different, and the electromagnetic radiation is also different. 



https://scitechdaily.com/quantum-leap-redefining-complex-problem-solving/


https://scitechdaily.com/unveiling-the-thorium-nuclear-clock-and-its-time-twisting-secrets/


https://en.wikipedia.org/wiki/Three-body_problem

Comments

Popular posts from this blog

The LK-99 could be a fundamental advance even if it cannot reach superconductivity in 400K.

The next step in superconducting research is that LK-99 was not superconducting at room temperature. Or was it? The thing is that there is needed more research about that material. And even if it couldn't reach superconductivity in 400K that doesn't mean that material is not fundamental. And if LK-99 can maintain its superconductivity in 400K that means a fundamental breakthrough in superconducting technology.  The LK-99 can be hype or it can be the real thing. The thing is, anyway, that high-voltage cables and our electric networks are not turning superconducting before next summer. But if we can change the electric network to superconducting by using some reasonable material. That thing can be the next step in the environment. Superconductors decrease the need to produce electricity. But today cooling systems that need lots of energy are the thing that turn superconductors that need low temperatures non-practical for everyday use.  When the project begins there is lots of ent

Black holes, the speed of light, and gravitational background are things that are connecting the universe.

 Black holes, the speed of light, and gravitational background are things that are connecting the universe.  Black holes and gravitational waves: is black hole's singularity at so high energy level that energy travels in one direction in the form of a gravitational wave.  We normally say that black holes do not send radiation. And we are wrong. Black holes send gravitational waves. Gravitational waves are wave movement or radiation. And that means the black holes are bright gravitational objects.  If we can use water to illustrate the gravitational interaction we can say that gravitational waves push the surface tension out from the gravitational center. Then the other quantum fields push particles or objects into a black hole. The gravitational waves push energy out from the objects. And then the energy or quantum fields behind that object push them into the gravitational center.  The elementary particles are quantum fields or whisk-looking structures. If the gravitational wave is

The CEO of Open AI, Sam Altman said that AI development requires a similar organization as IAEA.

We know that there are many risks in AI development. And there must be something that puts people realize that these kinds of things are not jokes. The problem is how to take control of the AI development. If we think about international contracts regarding AI development. We must realize that there is a possibility that the contract that should limit AI development turns into another version of the Nuclear Non-Proliferation Treaty. That treaty didn't ever deny the escalation of nuclear weapons. And there is a big possibility that the AI-limitation contracts follow the route of the Nuclear Non-Proliferation Treaty.  The biggest problem with AI development is the new platforms that can run every complicated and effective code. That means the quantum computer-based neural networks can turn themselves more intelligent than humans. The AI has the ultimate ability to learn new things. And if it runs on the quantum-hybrid system that switches its state between binary and quantum states,