Skip to main content

The new sensor from Aalto-Yliopisto benefits the Heisenberg uncertainty principle.


"An artistic illustration shows how microscopic bolometers (depicted on the right) can be used to sense very weak radiation emitted from qubits (depicted on the left). Credit: Aleksandr Käkinen/Aalto University" (ScitechDaily, Breaking the Limits: Overcoming Heisenberg’s Uncertainty in Quantum Measurements)

"The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position and momentum, can be simultaneously known. In other words, the more accurately one property is measured, the less accurately the other property can be known." (Wikipedia, Uncertainty principle) 

In this text, the Heisenberg uncertainty principle means the same as the uncertainty principle or Heisenberg indeterminacy principle,

The highly accurate temperature sensors can measure the quantum system's energy levels. The ability to control the system requires the ability to observe its quantities. And the best quantity that we can observe is heat. The heat tells about the condition in the quantum systems. When the system follows the heat in both ends of the quantum entanglement it recognizes the point. When the quantum entanglement reaches the stable energy level. At that point, the system must transport information into some other qubit. 

Or the quantum entanglement loses its data. So the best way to make a quantum computer is to create a qubit cloud. The qubit cloud is the quantum nervous, or quantum neural system. And we can use the same diagrams for modeling those quantum neuro systems. In quantum neuro systems is always a hole, the lower energy point, that can receive information from the quantum entanglement that fills. In quantum computing. The term "filling" means that the quantum entanglement reaches the same energy level at both of its ends. 

That thing forms a standing wave that destroys the quantum entanglement. And in very futuristic ideas. Quantum entanglement could store its energy or information in that standing wave. That creates the idea that quantum computers can transfer information between different quantities. In that very theoretical model, the system can make quantum entanglement and superposition between, for example, infrared- and radio waves. 



The model of a 3D quantum neural system in that system is lower energy areas like electron holes. Those quantum holes allow. There is always space there is always free space or free qubit, there the system can transport information when quantum entanglement makes superposition. The model is created for a 3D neural system. But that thing also can be used to model the 3D quantum neural systems. 

Heisenberg uncertainty means that we cannot measure all energy forms that affect particles in the universe at the same time. So if we want to determine the particle's precise point cannot determine the particle's movement. We can determine the object's relative point to us. But we cannot measure the object's precise point about the universe. 

The thing is that space or room is one thing in bigger spaces and bigger rooms. And that means there is no certain place for particles in their entirety. But when we think about things like different quantities we cannot measure all of them, at the same time, using the same point. 

But if we share that mission with multiple sensors, we can take almost certain high-value results. The problem is that all those sensors have different distances and angles to the point, that they should measure. Those things affect measurement accuracy. And at the quantum level, even small error causes great mistakes. 

We cannot make an operating quantum computer if we think that way. In quantum computers, the computer can use a certain quantity to transport information. In the quantum world quantities like kinetic energy can turn into some other energy form like heat. The heat is one form of electromagnetic energy. It's infrared radiation. 

The heat or temperature can transform its mode to kinetic energy. And then kinetic energy can turn into another type of electromagnetic energy like electricity. The system can use heat to rotate the turbine, and the turbine rotates the generator. In the photoelectric process, light warms silicone. That heat travels to the silicone atoms. 

Then that increases those atom's energy levels. The distance between atoms expands. And that releases electrons in silicone. That is the thing that makes solar panels operate. In that process, the light transfers energy to atoms and then to electrons. 

An ability to change the form of the quantity is the thing, that makes one of the most interesting and futuristic quantum computers theoretically possible. In that system, the superposition is created between two quantities. In that case, a system can make a theoretical superposition between IR radiation and radio waves. This kind of thing can theoretically make it possible to create superposition and entanglement or simply turn two superstrings into a quantum computer. 


https://scitechdaily.com/breaking-the-limits-overcoming-heisenbergs-uncertainty-in-quantum-measurements/

https://en.wikipedia.org/wiki/Uncertainty_principle

Comments

Popular posts from this blog

The LK-99 could be a fundamental advance even if it cannot reach superconductivity in 400K.

The next step in superconducting research is that LK-99 was not superconducting at room temperature. Or was it? The thing is that there is needed more research about that material. And even if it couldn't reach superconductivity in 400K that doesn't mean that material is not fundamental. And if LK-99 can maintain its superconductivity in 400K that means a fundamental breakthrough in superconducting technology.  The LK-99 can be hype or it can be the real thing. The thing is, anyway, that high-voltage cables and our electric networks are not turning superconducting before next summer. But if we can change the electric network to superconducting by using some reasonable material. That thing can be the next step in the environment. Superconductors decrease the need to produce electricity. But today cooling systems that need lots of energy are the thing that turn superconductors that need low temperatures non-practical for everyday use.  When the project begins there is lots of ent

Black holes, the speed of light, and gravitational background are things that are connecting the universe.

 Black holes, the speed of light, and gravitational background are things that are connecting the universe.  Black holes and gravitational waves: is black hole's singularity at so high energy level that energy travels in one direction in the form of a gravitational wave.  We normally say that black holes do not send radiation. And we are wrong. Black holes send gravitational waves. Gravitational waves are wave movement or radiation. And that means the black holes are bright gravitational objects.  If we can use water to illustrate the gravitational interaction we can say that gravitational waves push the surface tension out from the gravitational center. Then the other quantum fields push particles or objects into a black hole. The gravitational waves push energy out from the objects. And then the energy or quantum fields behind that object push them into the gravitational center.  The elementary particles are quantum fields or whisk-looking structures. If the gravitational wave is

The CEO of Open AI, Sam Altman said that AI development requires a similar organization as IAEA.

We know that there are many risks in AI development. And there must be something that puts people realize that these kinds of things are not jokes. The problem is how to take control of the AI development. If we think about international contracts regarding AI development. We must realize that there is a possibility that the contract that should limit AI development turns into another version of the Nuclear Non-Proliferation Treaty. That treaty didn't ever deny the escalation of nuclear weapons. And there is a big possibility that the AI-limitation contracts follow the route of the Nuclear Non-Proliferation Treaty.  The biggest problem with AI development is the new platforms that can run every complicated and effective code. That means the quantum computer-based neural networks can turn themselves more intelligent than humans. The AI has the ultimate ability to learn new things. And if it runs on the quantum-hybrid system that switches its state between binary and quantum states,