Skip to main content

Researchers developed new tools that can be a breakthrough in computing and robotics.


"Researchers have developed an innovative phase change memory device that promises low power consumption and reduced manufacturing costs. This development, potentially replacing DRAM and NAND flash memory, is notable for its efficiency and could significantly impact the future of memory and neuromorphic computing technology. Credit: SciTechDaily.com" (ScitechDaily, New Ultra-Low Power Memory for Neuromorphic Computing)


The new neuromorphic computers require lots of processors. And that's why those systems require new microchips, that have low energy use. Low-energy microchips keep the temperature in computers low. Same way minimizing the cable length minimizes radio waves and temperature in neurocomputing.


Silicon carbide plates can act as artificial synapses. 


Researchers can create artificial synapses in the artificial neural network using silicon carbide plates. The silicon carbide plates that offer "Eternal memory" can offer a new way to make artificial axons to communicate. The system drives information into the silicone carbide mass-memory. Then, the system transports information from the first silicon carbide plate to the second plate. 

Those silicon carbide plates can be in the points where those artificial axons meet. That makes it possible for the wires that connect microprocessors can act like real axons. The silicon carbide plates are like synapses in the neural network. And they can exchange data through the artificial synapsis hole. Those silicon carbide plates can make it possible to connect computers with real neurons with ultimate accuracy. 

The low-energy microchips can control things like intelligent liquids. Those intelligent liquids make it possible to create new types of robots that are like amoebas. 


"The information is written in optically active atomic defects by a focused ion beam (left) and read using the cathodoluminescence or photoluminescence (right). Credit: M. Hollenbach, H. Schultheiß" (ScitechDaily, Unlocking the Secrets of Eternal Data With Silicon Carbide)


Above: Diagram of a chemical synaptic connection. (Wikipedia, Synapse) Engineers can replace that chemical connection using an electric connection. In those systems ions or laser rays transport data to miniature microchips. Then the system transports information into the mass memory. The neural computer can use feedback the receiving system sends information back to the sender to make sure that the information that it got is not changed. 

The silicone carbide plates can act as synapses. Those artificial synapses can connect with miniature microchips. That thing makes it possible to create a new type of neurocomputers. In those computers, the microchips and ion cannons are on both sides of the mass memory. And those entireties are connected into one large entirety. 

Superconducting and photonic computers are tools that help to create new and more powerful neural computers. 


The low-energy microchips can keep the system temperature lower. And that thing is important in computing. The 2D semiconductors are tools that make nano-size microchips possible. The ability to control the semiconductors makes superconducting computers hard to make. Superconducting computers cannot close the gate using semiconductors. And then another problem is how to drive information from the regular computers to superconducting computers. 



"Harvard researchers have created a versatile programmable metafluid that can change its properties, including viscosity and optical transparency, in response to pressure. This new class of fluid has potential applications in robotics, optical devices, and energy dissipation, showcasing a significant breakthrough in metamaterial technology. (Artist’s concept). Credit: SciTechDaily.com" (ScitechDaily, Not Science Fiction: Harvard Scientists Have Developed an “Intelligent” Liquid)


Superconducting computers require very low voltage. Extremely low temperature makes those systems superconducting. One version of how to drive information into superconducting computers is to use lasers. The superconducting computers are in the freezer which keeps them stable. Then lasers will transport information into the superconducting computer through windows. The laser system sends data to the photovoltaic cells. Then those photovoltaic cells can transform data that light impulses carry into electric impulses.  

One version of how to make the superconducting computer's gate operate is to use a laser trap. The laser trap or laser gata is a laser ray that denies electricity or optical signal travel through it. When a gate laser (or maser) operates. Electricity cannot cross that line. That means the gate is closed. The coherent light or electromagnetic field denies the lower energy beam travel through it. 

The semiconductors are required to control electric flow in microchips. One possibility is to use photonic computers. The small optical crystals can make it possible to aim laser rays into the right light cells. In photonic computers, laser rays replace the electric wires. The photovoltaic cells can transform the photonic information into an electric form. 


https://scitechdaily.com/new-ultra-low-power-memory-for-neuromorphic-computing/


https://scitechdaily.com/not-science-fiction-harvard-scientists-have-developed-an-intelligent-liquid/


https://scitechdaily.com/unlocking-the-secrets-of-eternal-data-with-silicon-carbide/


https://en.wikipedia.org/wiki/Dynamic_random-access_memory


https://en.wikipedia.org/wiki/Flash_memory


https://en.wikipedia.org/wiki/NAND_gate


https://en.wikipedia.org/wiki/Synapse



Comments

Popular posts from this blog

The LK-99 could be a fundamental advance even if it cannot reach superconductivity in 400K.

The next step in superconducting research is that LK-99 was not superconducting at room temperature. Or was it? The thing is that there is needed more research about that material. And even if it couldn't reach superconductivity in 400K that doesn't mean that material is not fundamental. And if LK-99 can maintain its superconductivity in 400K that means a fundamental breakthrough in superconducting technology.  The LK-99 can be hype or it can be the real thing. The thing is, anyway, that high-voltage cables and our electric networks are not turning superconducting before next summer. But if we can change the electric network to superconducting by using some reasonable material. That thing can be the next step in the environment. Superconductors decrease the need to produce electricity. But today cooling systems that need lots of energy are the thing that turn superconductors that need low temperatures non-practical for everyday use.  When the project begins there is lots of ent

Black holes, the speed of light, and gravitational background are things that are connecting the universe.

 Black holes, the speed of light, and gravitational background are things that are connecting the universe.  Black holes and gravitational waves: is black hole's singularity at so high energy level that energy travels in one direction in the form of a gravitational wave.  We normally say that black holes do not send radiation. And we are wrong. Black holes send gravitational waves. Gravitational waves are wave movement or radiation. And that means the black holes are bright gravitational objects.  If we can use water to illustrate the gravitational interaction we can say that gravitational waves push the surface tension out from the gravitational center. Then the other quantum fields push particles or objects into a black hole. The gravitational waves push energy out from the objects. And then the energy or quantum fields behind that object push them into the gravitational center.  The elementary particles are quantum fields or whisk-looking structures. If the gravitational wave is

The CEO of Open AI, Sam Altman said that AI development requires a similar organization as IAEA.

We know that there are many risks in AI development. And there must be something that puts people realize that these kinds of things are not jokes. The problem is how to take control of the AI development. If we think about international contracts regarding AI development. We must realize that there is a possibility that the contract that should limit AI development turns into another version of the Nuclear Non-Proliferation Treaty. That treaty didn't ever deny the escalation of nuclear weapons. And there is a big possibility that the AI-limitation contracts follow the route of the Nuclear Non-Proliferation Treaty.  The biggest problem with AI development is the new platforms that can run every complicated and effective code. That means the quantum computer-based neural networks can turn themselves more intelligent than humans. The AI has the ultimate ability to learn new things. And if it runs on the quantum-hybrid system that switches its state between binary and quantum states,