Skip to main content

Quantum networks can make the world more secure.


"The 100-kilometer fiber optic cable through which a team of researchers at DTU has successfully distributed a quantum-encrypted key securely. Credit: DTU" (ScitechDaily, An Unprecedented 100 km – Researchers Set New Distance Record With Quantum Keys) 

Researchers made new records. They exchange quantum keys securely within 100 km. And that is the next step for ultra-secured data transmission. The networks are unable to operate if they are not secured. The cornerstone for secure communication is that the systems can exchange keys securely. 




The neurocomputer requires ultra-secure communication. 

The new findings are a big advantage to developing quantum networks. 

The difference between quantum networks and regular networks is that in quantum networks, information travels in qubits. The quantum network's problem is that the system packs information in the physical object. And that makes quantum computers resistant to regular eavesdropping. 

However, the quantum computer is vulnerable to outside effects. In quantum networks, information travels in quantum channels like nanotubes or hollow laser rays. When the quantum network sends information over long distances. It creates the quantum channel using phonon- or acoustic lasers to make the hollow channel through air. Then the system shoots hollow laser rays through it. And qubit can travel through that channel. 

The quantum network is not a synonym for a quantum computer. The quantum computers use quantum networks in their processors. However, the quantum network can transmit information between binary computers, as well as, the quantum network transports information between quantum computers. 


"Researchers from the Institute of Industrial Science, The University of Tokyo have solved a foundational problem in transmitting quantum information, which could dramatically enhance the utility of integrated circuits and quantum computing. Credit: Institute of Industrial Science, The University of Tokyo" (ScitecchDaily, Redefining Quantum Communication: Researchers Have Solved a Foundational Problem in Transmitting Quantum Information)



There are three main types of quantum networks. 


1) All quantum networks. Those systems transport all data in quantum mode. 


2) Hybrid quantum networks. Those networks send only encryption keys in qubits. The rest of the data travels in the form of regular electromagnetic signals. 


3) Virtual quantum networks. Those networks share data in multiple frequencies or multiple lines. The system shares information with multiple transportation lines using TCP/IP. Then it sends information at the same time. In this system, all data pack has a serial number. 


And that helps the receiving system to sort those received data packets into the right order without depending on their arrival order. So the system can mix those data packets into arbitrary order before sending them. Then receiving system can put them into the right order using those serial numbers. 

The quantum network allows ultra-secured communication between computers. And also another ultimate computing system called neurocomputer requires ultra-secured communication. In neurocomputers, the processor units can be at long distances from each other. 

Networked workstations can also act as neurocomputers. Theoretically is possible to transform the entire internet into a giant neurocomputer. The technical platform exists, but a lack of political willingness denies that kind of project. 

The quantum computer is a non-centralized data-handling tool. That system is multiple networked microprocessors. Just like quantum computers neurcomputer can drive multiple operations at the same time. The speed of those operations is not the same as quantum computers. But binary computers are less vulnerable to outside anomalies than quantum computers. 

The neurocomputer is not a synonym for neural networks. The neural network is the thing that interconnects sensors with computers. So a neural network is a sensory system the network that connects things like surveillance cameras with neurocomputers. 


https://scitechdaily.com/an-unprecedented-100-km-researchers-set-new-distance-record-with-quantum-keys/


https://scitechdaily.com/redefining-quantum-communication-researchers-have-solved-a-foundational-problem-in-transmitting-quantum-information/

Comments

Popular posts from this blog

Schrödinger's cat: and the limits of that idea.

"In quantum mechanics, Schrödinger's cat is a thought experiment concerning quantum superposition". (Wikipedia, Schrödinger's cat). But the same thing can use as model for many other thought experiments.  Sooner or later, or at least in the ultimate end of the universe, the Schrödinger's cat will turn into wave movement. The information that this cat involved exists but the cat does not exist in its material form. The information doesn't ever vanish. It just turns its shape.  We are all trapped in the universe and time. The universe is the space that is entirety to us. There are no confirmed other universities. But the multiverse is a logical continuum for the expanding galactic megastructures.  The problem with natural things is this. They are black and white. They exist or do not exist. Could there be something, that exists and not exists at the same time?  Scrödinger's cat is thinking experiment about case their cat is not dead or not alive. But in this...

The string theory offers a new way to calculate Pi.

"Scientists discovered a new series for pi through string theory research, echoing a 15th-century formula by Madhava. By combining Euler-Beta Functions and Feynman Diagrams, they modeled particle interactions efficiently. Credit: SciTechDaily.com" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Leap in Mathematics) People normally think that. The pi is the ratio of the circumference circle's circumference to the circle's diameter. The Pi is a mathematical constant 3.14159..., the endless decimal number. The Pi is interesting because developers can use that decimal number to make the encryption algorithms stronger.  The idea is that the encryptions program hides the message's original ASCII numbers by multiplicating those numbers with some decimal number. Or the system can add some numbers to those ASCII numbers.  "Aninda Sinha (left) and Arnab Saha (right). Credit: Manu Y" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Le...

There are always more than three actors in the real world.

"An international research team is advancing precision timekeeping by developing a nuclear clock using thorium isotopes and innovative laser methods, potentially transforming our understanding of physical constants and dark matter. (Artist’s concept.) Credit: SciTechDaily.com" (ScitechDaily, Unveiling the Thorium Nuclear Clock and Its Time-Twisting Secrets) From Three-body problem... There are no pure three-body systems in nature. There are always more than three components in the system. For making real three-body systems we must separate those three bodies from the environment. Otherwise, there are stable effects. But nobody can predict some effects like distant supernova explosions or sun eruptions.  And one of those things that affect all bodies is time. When radioactive materials decay. That affects the stability and symmetry of the object.  Energy levels affect the existence of things like neutrons. The thorium atom clocks are next-generation tools for time measurement....