Skip to main content

The new quantum materials are coming.


"Researchers have devised a quantum mechanics-based approach that significantly improves the prediction and enhancement of metal ductility, leading to the development of metals that are so durable they could be considered “unbreakable” for their given application. Credit: SciTechDaily.com" (ScitechDaily, Quantum Breakthrough Paves Way for “Unbreakable” Metals)


When we think about things like neutron stars one of the reasons why it is so hard to break is this: Neutron star is a homogenous object. On its shell are only neutrons. The neutrons are spinning in one direction. The spin of the entirety is so fast that the impact energy is distributed evenly on that structure. Another thing is that individual neutrons also spin vertically relative to the equator. And that drives energy out from that structure.  

And that drives energy out from the neutron star. Normally. Neutrons can exist at 877.75 seconds if it's outside the atom nucleus. But in neutron stars. Those neutrons are in powerful gravity and electromagnetic fields. Those fields pump energy to neutrons. So theoretically is possible to make a quantum net there is neutron rolls. Those neutron rolls can drive energy out of the structure. And that makes this structure a very strong thing. 

The idea is that atoms, ions electrons, and other subatomic particles form the quantum rolls that transport energy to the wanted direction. The idea of unbreakable material is that. The material can transport energy through it or away from it immediately after energy stress. In that process, the material must not form internal standing waves. 

"Fiber-Coupled Single-Photon Source. Credit: Swati Foujdar". (ScitechDaily, Practical Quantum Devices Now Closer to Reality – Scientists Unveil Room Temperature Photonic Chips) This kind of system shoots laser beams through the holes in the material. That system can transport energy out from it. 

The thing that makes superconducting materials interesting is that there is no Hall field or resistance field in that material. That means the material can transport electromagnetic energy straight through it. Because there is no reflection of the superconductors are invisible to radars. And quantum materials can turn the superconducting effect to other wavelengths. 

In the simplest versions of the quantum materials is a lower energy layer below a higher energy layer. That makes energy travel to the lower energy layer. And if there is a laser ray or thermal pump in the middle of the structure, that thing can pump energy out of the structure. 

The thing that makes steel strong is that there is carbon. That carbon forms energy pockets in the steel. And those energy pockets make steel stronger. The fullerene carbon makes Damascus steel stronger than regular steel. 

"A quantum emitter centrally placed within a hybrid metal-dielectric bullseye antenna, designed for highly directional photon emission. The antenna’s unique structure allows photons to be efficiently coupled directly into an optical fiber, showcasing a pivotal enhancement in quantum photonics technology with implications for secure communication and advanced quantum computing applications. Credit: Alexander Nazarov" (ScitechDaily, Practical Quantum Devices Now Closer to Reality – Scientists Unveil Room Temperature Photonic Chips)




Pure iron is normally fragile. The reason for that is there are no other atoms than iron that can act as energy pockets. This makes the iron fragile because impact energy forms standing waves in that structure. And sooner or later, those standing waves destroy the structure pushing iron atoms away from each other. 

But if the iron atoms spin oppositely as groups. There could be a line in the middle of the structure where those atoms or quantum rolls face each other. In that model, the quantum rolls push energy straight through the layer. Ot if those quantum role divisions spin into the edge of the material they can transport energy to the edge of the structure and away from it. 

Quantum materials are materials that benefit the quantum states of atoms. The ability to control quantum states in materials gives new abilities for material. If researchers can control the atom's spin they can create metals that conduct impact energy straight through it. That requires that those quantum balls spin oppositely. 

If all atoms and particles have a spin in the same direction. The energy levels of those atoms are higher at the front of the structure and lower at the back of the structure. 

That thing allows energy can flow in one direction in material. And that can make material to drive quantum fields in a certain direction. This allows to transfer of energy away from it. And it can make it possible to create the unbreakable steel. 



https://scitechdaily.com/physicists-have-uncovered-a-new-spin-phase-in-quantum-materials/


https://scitechdaily.com/practical-quantum-devices-now-closer-to-reality-scientists-unveil-room-temperature-photonic-chips/


https://scitechdaily.com/quantum-breakthrough-paves-way-for-unbreakable-metals/


https://scitechdaily.com/unmasking-the-secrets-of-superconductor-phase-iii/



Comments

Popular posts from this blog

The LK-99 could be a fundamental advance even if it cannot reach superconductivity in 400K.

The next step in superconducting research is that LK-99 was not superconducting at room temperature. Or was it? The thing is that there is needed more research about that material. And even if it couldn't reach superconductivity in 400K that doesn't mean that material is not fundamental. And if LK-99 can maintain its superconductivity in 400K that means a fundamental breakthrough in superconducting technology.  The LK-99 can be hype or it can be the real thing. The thing is, anyway, that high-voltage cables and our electric networks are not turning superconducting before next summer. But if we can change the electric network to superconducting by using some reasonable material. That thing can be the next step in the environment. Superconductors decrease the need to produce electricity. But today cooling systems that need lots of energy are the thing that turn superconductors that need low temperatures non-practical for everyday use.  When the project begins there is lots of ent

Black holes, the speed of light, and gravitational background are things that are connecting the universe.

 Black holes, the speed of light, and gravitational background are things that are connecting the universe.  Black holes and gravitational waves: is black hole's singularity at so high energy level that energy travels in one direction in the form of a gravitational wave.  We normally say that black holes do not send radiation. And we are wrong. Black holes send gravitational waves. Gravitational waves are wave movement or radiation. And that means the black holes are bright gravitational objects.  If we can use water to illustrate the gravitational interaction we can say that gravitational waves push the surface tension out from the gravitational center. Then the other quantum fields push particles or objects into a black hole. The gravitational waves push energy out from the objects. And then the energy or quantum fields behind that object push them into the gravitational center.  The elementary particles are quantum fields or whisk-looking structures. If the gravitational wave is

The CEO of Open AI, Sam Altman said that AI development requires a similar organization as IAEA.

We know that there are many risks in AI development. And there must be something that puts people realize that these kinds of things are not jokes. The problem is how to take control of the AI development. If we think about international contracts regarding AI development. We must realize that there is a possibility that the contract that should limit AI development turns into another version of the Nuclear Non-Proliferation Treaty. That treaty didn't ever deny the escalation of nuclear weapons. And there is a big possibility that the AI-limitation contracts follow the route of the Nuclear Non-Proliferation Treaty.  The biggest problem with AI development is the new platforms that can run every complicated and effective code. That means the quantum computer-based neural networks can turn themselves more intelligent than humans. The AI has the ultimate ability to learn new things. And if it runs on the quantum-hybrid system that switches its state between binary and quantum states,