Skip to main content

Plasmonic waves can make new waves in quantum technology.


"LSU researchers have made a significant discovery related to the fundamental properties and behavior of plasmonic waves, which can lead ot the development of more sensitive and robust quantum technologies. Credit: LSU" (ScitechDaily, Plasmonics Breakthrough Unleashes New Era of Quantum Technologies)


Plasmonic waves in the quantum gas are the next-generation tools. The plasmonic wave is quite similar to radio waves. Or, rather say it, a combination of acoustic waves and electromagnetic waves. Quantum gas is an atom group. In those atom groups, temperature and pressure are extremely low. 

The distance of atoms is long. And when an electromagnetic system can pump energy to those atoms. But the thing in quantum gas is that the atoms also make physical movements like soundwaves. It's possible. To create quantum gas using monoatomic ions like ionized noble gas. In those systems, positive (or negative) atoms push each other away. 


When the box is filled with quantum gas and some 3D structure is put in it the system can transmit energy in that gas. The energy release makes those atoms send energy impulses to that structure. 

When some atom is at the route of that energy impulse, it changes that wave movement's direction. And that makes it possible to create new types of sensor technology. The quantum gas can form waves where atoms travel in lines. And that thing makes quantum gas interesting. 


Another interesting thing is that the electrons and maybe, free quarks can also form quantum gas. In the standing electron cloud. The photons pump energy can used to send extremely short wave movement to the structure that is in the middle of it. 

That electron cloud can scan the details of single atoms. The smallest known particle, a photon can also create a photon cloud. Those standing photons can send wave movement. That can used to see things like bonds between quarks. 


When energy hits some particle. The particle sends wave movement to the electromagnetic field around it. That energy impulse forms a photon. Same way photons can send wave movement through the structure. 

One answer for making qubits safe is to put them in the bag. In this model, the hollow plasmoid bubble acts like a plastic bag that stabilizes the qubit. The high-energy plasma with low temperature can used as a protective field that protects qubits from outcoming energy. The problem with qubits is the changes in energy levels around them. 

The fusion reactor's high-energy plasma is possible to transform into qubits. The system can create quantum entanglement between standing photons in that reactor. And then it can transport information to another lower-energy plasma ring. The problem is how to make those photons stay in a static position. 


In some models, two high-energy plasma rings where another plasma ring can be in a higher energy level can transmit information to the lower energy level plasma ring. If those plasma rings have identical plasma structures, laser rays can transmit information through higher-energy plasma rings. And that makes information travel to the lower energy plasma ring. 

When the other photon is at the highest possible energy level. And the other is in the lowest possible energy level, that thing maximizes the quantum entanglements' existence. 

Plasmonic waves can transport information between multiple qubits at the same time. The idea is that the qubits are like buoys in line, and then the plasmonic wave can raise their energy level as an entirety. 

Plasmonic waves can used to improve quantum technology. There is a small possibility that researchers can make quantum entanglement between those wavetops. Or in the system particle lines can be stable in the system. And the plasmonic waves can raise their energy level in groups. That allows to transport of information in multiple lines. That makes it possible to transport information in a quantum computer between multiple qubit lines. But that thing is in the future. 


https://scitechdaily.com/plasmonics-breakthrough-unleashes-new-era-of-quantum-technologies/

Comments

Popular posts from this blog

The LK-99 could be a fundamental advance even if it cannot reach superconductivity in 400K.

The next step in superconducting research is that LK-99 was not superconducting at room temperature. Or was it? The thing is that there is needed more research about that material. And even if it couldn't reach superconductivity in 400K that doesn't mean that material is not fundamental. And if LK-99 can maintain its superconductivity in 400K that means a fundamental breakthrough in superconducting technology.  The LK-99 can be hype or it can be the real thing. The thing is, anyway, that high-voltage cables and our electric networks are not turning superconducting before next summer. But if we can change the electric network to superconducting by using some reasonable material. That thing can be the next step in the environment. Superconductors decrease the need to produce electricity. But today cooling systems that need lots of energy are the thing that turn superconductors that need low temperatures non-practical for everyday use.  When the project begins there is lots of ent

Black holes, the speed of light, and gravitational background are things that are connecting the universe.

 Black holes, the speed of light, and gravitational background are things that are connecting the universe.  Black holes and gravitational waves: is black hole's singularity at so high energy level that energy travels in one direction in the form of a gravitational wave.  We normally say that black holes do not send radiation. And we are wrong. Black holes send gravitational waves. Gravitational waves are wave movement or radiation. And that means the black holes are bright gravitational objects.  If we can use water to illustrate the gravitational interaction we can say that gravitational waves push the surface tension out from the gravitational center. Then the other quantum fields push particles or objects into a black hole. The gravitational waves push energy out from the objects. And then the energy or quantum fields behind that object push them into the gravitational center.  The elementary particles are quantum fields or whisk-looking structures. If the gravitational wave is

The CEO of Open AI, Sam Altman said that AI development requires a similar organization as IAEA.

We know that there are many risks in AI development. And there must be something that puts people realize that these kinds of things are not jokes. The problem is how to take control of the AI development. If we think about international contracts regarding AI development. We must realize that there is a possibility that the contract that should limit AI development turns into another version of the Nuclear Non-Proliferation Treaty. That treaty didn't ever deny the escalation of nuclear weapons. And there is a big possibility that the AI-limitation contracts follow the route of the Nuclear Non-Proliferation Treaty.  The biggest problem with AI development is the new platforms that can run every complicated and effective code. That means the quantum computer-based neural networks can turn themselves more intelligent than humans. The AI has the ultimate ability to learn new things. And if it runs on the quantum-hybrid system that switches its state between binary and quantum states,