Skip to main content

Quantum computers and ultra-fast photonic microchips can danger even the most secure communication.


"Quantum computers could pose a major security risk to current communication systems in 12-15 years with their exponentially greater speed and code-breaking ability. (ScitechDaily, Today’s Most-Secure Communications Threatened by Future Quantum Computers)


Quantum computers can break entire binary cryptography. And that makes all communication unsecured. That is one of the greatest threats in quantum computing. And this brings the arms race to the quantum age. The quantum computer can create codes that any binary computer can break. But the quantum computer can also break old-fashioned codes. And that makes it an ultimate weapon and sabotage tool.  

Quantum computers can change the measurements of the ammunition in factories by changing the system calibration. Or it can delete databases from the opponent's computer systems. This thing can delete all SIM cards from mobile telephones. In peacetime, the hackers that operate using quantum systems can steal the names of the counter-espionage informants. 

"New advanced photonic chips have been developed that optimize light transmission for optical wireless systems. These chips, essential for future 5G and 6G networks, represent a shift towards energy-efficient analog technologies and have wide-ranging applications in high-speed data processing and communication. Credit: Politecnico di Milano" (ScitechDaily, Light-Speed Calculations: New Photonic Chips Are Changing Wireless Communication)



The photonic microchips can also used to hack the ultra-secured communication. The same microchips used as game-changers in wireless communication can also hack that system. 


The photonic microchips can also make it possible to analyze and break even the fastest and most secure communication. If that communication is protected using old-fashioned computers. 


There is a golden rule in use of the encryption software. The time that the system uses to generate the binary number is directly proportional to the time that the system uses to generate the binary number. Riemann's conjecture is a recursive function, that should make very much binary numbers. The Achilles heel in the simple Riemann programs or encryption programs was that the system just calculated a series of binary numbers. 

And that makes the algorithm vulnerable to brute force attacks that make using faster computers. In modern versions, there should be a point in the Riemann series where the computer can start to generate those binary numbers. Then the system can put them in the matrix, and number those binary numbers. The system may use the individual binary number for each letter. In that model, the algorithm uses random numbers that it selects from the matrix. The thing that makes this algorithm vulnerable is that the receiving system must have data. That allows us to decode the information. That means if the receiving system is hacked, that causes real catastrophes. 

That thing means that the attacker gets new settings all the time. If they sent through the Internet. The main problem with Riemann's conjecture is that it's a very used tool. And that means the developers must create more secure ways to communicate than some Riemann's conjecture. That has been a long time the cryptography's cornerstone. But modern ultra-fast computers make it non-secured.

But the other thing is that the new photonic microchips can make data networks insecure. They are faster and more effective data handlers than regular microprocessors. Things like AI-boosted photonic microprocessors are extremely good tools for hackers. Those systems are so fast that they can find the binary number, created using Riemann's conjecture quite quickly especially if the the encryption software user doesn't generate a binary number that encrypts the information. 


https://scitechdaily.com/light-speed-calculations-new-photonic-chips-are-changing-wireless-communication/


https://scitechdaily.com/todays-most-secure-communications-threatened-by-future-quantum-computers/


https://scitechdaily.com/unlocking-the-future-of-security-with-mits-terahertz-cryptographic-id-tags/


https://www.verdict.co.uk/quantum-computing-breaking-security-encryption/


Comments

Popular posts from this blog

Schrödinger's cat: and the limits of that idea.

"In quantum mechanics, Schrödinger's cat is a thought experiment concerning quantum superposition". (Wikipedia, Schrödinger's cat). But the same thing can use as model for many other thought experiments.  Sooner or later, or at least in the ultimate end of the universe, the Schrödinger's cat will turn into wave movement. The information that this cat involved exists but the cat does not exist in its material form. The information doesn't ever vanish. It just turns its shape.  We are all trapped in the universe and time. The universe is the space that is entirety to us. There are no confirmed other universities. But the multiverse is a logical continuum for the expanding galactic megastructures.  The problem with natural things is this. They are black and white. They exist or do not exist. Could there be something, that exists and not exists at the same time?  Scrödinger's cat is thinking experiment about case their cat is not dead or not alive. But in this...

The string theory offers a new way to calculate Pi.

"Scientists discovered a new series for pi through string theory research, echoing a 15th-century formula by Madhava. By combining Euler-Beta Functions and Feynman Diagrams, they modeled particle interactions efficiently. Credit: SciTechDaily.com" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Leap in Mathematics) People normally think that. The pi is the ratio of the circumference circle's circumference to the circle's diameter. The Pi is a mathematical constant 3.14159..., the endless decimal number. The Pi is interesting because developers can use that decimal number to make the encryption algorithms stronger.  The idea is that the encryptions program hides the message's original ASCII numbers by multiplicating those numbers with some decimal number. Or the system can add some numbers to those ASCII numbers.  "Aninda Sinha (left) and Arnab Saha (right). Credit: Manu Y" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Le...

There are always more than three actors in the real world.

"An international research team is advancing precision timekeeping by developing a nuclear clock using thorium isotopes and innovative laser methods, potentially transforming our understanding of physical constants and dark matter. (Artist’s concept.) Credit: SciTechDaily.com" (ScitechDaily, Unveiling the Thorium Nuclear Clock and Its Time-Twisting Secrets) From Three-body problem... There are no pure three-body systems in nature. There are always more than three components in the system. For making real three-body systems we must separate those three bodies from the environment. Otherwise, there are stable effects. But nobody can predict some effects like distant supernova explosions or sun eruptions.  And one of those things that affect all bodies is time. When radioactive materials decay. That affects the stability and symmetry of the object.  Energy levels affect the existence of things like neutrons. The thorium atom clocks are next-generation tools for time measurement....