Skip to main content

The breakthrough in solid-state qubits.

Hybrid integration of a designer nanodiamond with photonic circuits via ring resonators. Credit
Steven Burrows/Sun Group (ScitechDaily, Solid-State Qubits: Artificial Atoms Unlock Quantum Computing Breakthrough)

******************************************

The next part is from ScitechDaily.com


"JILA breakthrough in integrating artificial atoms with photonic circuits advances quantum computing efficiency and scalability". (ScitechDaily, Solid-State Qubits: Artificial Atoms Unlock Quantum Computing Breakthrough)


"In quantum information science, many particles can act as “bits,” from individual atoms to photons. At JILA, researchers utilize these bits as “qubits,” storing and processing quantum 1s or 0s through a unique system". (ScitechDaily, Solid-State Qubits: Artificial Atoms Unlock Quantum Computing Breakthrough)

"While many JILA Fellows focus on qubits found in nature, such as atoms and ions, JILA Associate Fellow and University of Colorado Boulder Assistant Professor of Physics Shuo Sun is taking a different approach by using “artificial atoms,” or semiconducting nanocrystals with unique electronic properties. By exploiting the atomic dynamics inside fabricated diamond crystals, physicists like Sun can produce a new type of qubit, known as a “solid-state qubit,” or an artificial atom". (ScitechDaily, Solid-State Qubits: Artificial Atoms Unlock Quantum Computing Breakthrough)

"Because these artificial atoms do not move, one way to let them talk to each other is to place them inside a photonic circuit. The photons traveling inside the photonic circuit can connect different artificial atoms. Like hot air moving through an air duct to warm a cold room, photons move through the quantum circuit to induce interactions between the artificial atoms. “Having an interface between artificial atoms and photons allows you to achieve precise control of the interactions between two artificial atoms,” explained Sun". (ScitechDaily, Solid-State Qubits: Artificial Atoms Unlock Quantum Computing Breakthrough)

"Historically, there have been problems with integrating artificial atoms with photonic circuits. This is because creating the artificial atoms (where atoms are knocked out of a diamond crystal) is a very random process, leading to random placement of the artificial atoms, random number of artificial atoms at each location, and random color each artificial atom emits".(ScitechDaily, Solid-State Qubits: Artificial Atoms Unlock Quantum Computing Breakthrough)

https://scitechdaily.com/solid-state-qubits-artificial-atoms-unlock-quantum-computing-breakthrough/

JILA homepage: 

https://jila.colorado.edu/

*******************************************************************

Making photonic circuits in solid-state materials is quite difficult. Making a photonic network in solid-state material requires channels or tubes inside that material. And in that case, photons can travel or transmit wave movement in those channels. Those channels can be made using nanotubes. Or a laser can drill those channels in solid materials. 

Making quantum computers in solid-state material is similar. As making photonic network. The system must make quantum entanglement between two identical particles. And the most suitable particles are photons. Theoretically is possible to create two photonic clouds with similarly oscillating and the lasers will send information into them. 


In some models, the system can use two oppositely positioned time- or photonic crystals for making quantum entanglement. Laser rays will first freeze those photonic crystals. 


And then those systems can create quantum entanglements between those photons. The photons are been the most useful qubits because they don't interact with EM. fields. In regular systems, photons are framed in the frame, and then a laser sends information to them. 

The new idea is to use nano-diamonds, or artificial atoms for these purposes. The artificial atoms are diamond-like, very small crystal structures. Those crystal structures can create photonic clouds in or around them. And then those systems can make a superposition between two photonic clouds. That is one of the versions of solid-state qubits. 

The problem is how to make photons travel around the nanocrystals. In some versions, the nanocrystal creates an electron ring where electrons travel in line. And then, the laser beam that impacts energy to nanocrystals makes those electrons send photons. 

The thing. What would make it easier to control qubits is that a large group of makers of the qubits can controlled. In the ideal case, the system can create the quantum entanglement between large entireties. And the nanodiamond with a photonic ring with resonators is one of the most promising things in the world.

The system could create an electron ring that orbits the nanodiamond. Then the oscillator sends energy to that ring, and then those electrons send photons. That kind of system requires highly accurate energy measurements. 


https://scitechdaily.com/solid-state-qubits-artificial-atoms-unlock-quantum-computing-breakthrough/

Comments

Popular posts from this blog

The LK-99 could be a fundamental advance even if it cannot reach superconductivity in 400K.

The next step in superconducting research is that LK-99 was not superconducting at room temperature. Or was it? The thing is that there is needed more research about that material. And even if it couldn't reach superconductivity in 400K that doesn't mean that material is not fundamental. And if LK-99 can maintain its superconductivity in 400K that means a fundamental breakthrough in superconducting technology.  The LK-99 can be hype or it can be the real thing. The thing is, anyway, that high-voltage cables and our electric networks are not turning superconducting before next summer. But if we can change the electric network to superconducting by using some reasonable material. That thing can be the next step in the environment. Superconductors decrease the need to produce electricity. But today cooling systems that need lots of energy are the thing that turn superconductors that need low temperatures non-practical for everyday use.  When the project begins there is lots of ent

Black holes, the speed of light, and gravitational background are things that are connecting the universe.

 Black holes, the speed of light, and gravitational background are things that are connecting the universe.  Black holes and gravitational waves: is black hole's singularity at so high energy level that energy travels in one direction in the form of a gravitational wave.  We normally say that black holes do not send radiation. And we are wrong. Black holes send gravitational waves. Gravitational waves are wave movement or radiation. And that means the black holes are bright gravitational objects.  If we can use water to illustrate the gravitational interaction we can say that gravitational waves push the surface tension out from the gravitational center. Then the other quantum fields push particles or objects into a black hole. The gravitational waves push energy out from the objects. And then the energy or quantum fields behind that object push them into the gravitational center.  The elementary particles are quantum fields or whisk-looking structures. If the gravitational wave is

The CEO of Open AI, Sam Altman said that AI development requires a similar organization as IAEA.

We know that there are many risks in AI development. And there must be something that puts people realize that these kinds of things are not jokes. The problem is how to take control of the AI development. If we think about international contracts regarding AI development. We must realize that there is a possibility that the contract that should limit AI development turns into another version of the Nuclear Non-Proliferation Treaty. That treaty didn't ever deny the escalation of nuclear weapons. And there is a big possibility that the AI-limitation contracts follow the route of the Nuclear Non-Proliferation Treaty.  The biggest problem with AI development is the new platforms that can run every complicated and effective code. That means the quantum computer-based neural networks can turn themselves more intelligent than humans. The AI has the ultimate ability to learn new things. And if it runs on the quantum-hybrid system that switches its state between binary and quantum states,