Skip to main content

The new microchips have revolutionary abilities.




"The sensor network is designed so the chips can be implanted into the body or integrated into wearable devices. Each submillimeter-sized silicon sensor mimics how neurons in the brain communicate through spikes of electrical activity. Credit: Nick Dentamaro/Brown University." (ScitechDaily, Revolutionizing Wireless Communication: How Tiny Chips Could Transform Medical Technology)

If a microchip is in a bright place it can use solar power. That kind of system can used with artificial retinas. And in the light-operated pacemakers. In the last ones, the cathed can transport light sources like laser rays to a pacemaker. Then those systems can transmit energy into them. Same time those systems can read data from the pacemaker's log. The reading of the microchip data can also happen wirelessly through the skin. 

Those new light-cells operated systems. Along with the microchips that can harvest energy from magnetic fields are the tools that make new medical microchips possible. The problem with tiny microchips is always energy. The energy source for those systems must be a very small thing, and that limits the use of those systems. 

Small-size chemical batteries have no long lifetime. Researchers working with things like salt-based solutions, that use sodium chloride's ability to ionize water. Those systems can make electricity from sweat. But one of the most promising things is technology there the small microchips get their energy from radio waves. 




"MIT researchers have developed a battery-free, self-powered sensor that can harvest energy from its environment. Credit: Christine Daniloff, MIT" (ScitechDaily, MIT’s Self-Powered Sensor Automatically Harvests Ambient Magnetic Energy)


"US Bureau of Standards 1922 Circular 120 "A simple homemade radio receiving outfit" taught Americans how to build a crystal radio. (Wikipedia, Crystal radio)


"A crystal radio receiver, also called a crystal set, is a simple radio receiver, popular in the early days of radio. It uses only the power of the received radio signal to produce sound, needing no external power. It is named for its most important component, a crystal detector, originally made from a piece of crystalline mineral such as galena. This component is now called a diode" (Wikipedia, Crystal radio). 

The same system can transport data and electricity at least to low-voltage electric components. 


"Greenleaf Whittier Pickard's US Patent 836,531 "Means for receiving intelligence communicated by electric waves" diagram" (Wikipedia, Crystal radio)



If researchers can connect the communication with the energy supply. That allows them to create small and effective microchips. In those systems, the microchip gets energy from the magnetic fields and radio waves that it uses for communication. 

We can say that is the newcomer for the crystal radio. The early radio receiver got its energy from the transmitting signal. The battery-operated amplifiers supplanted that system. But then researchers are starting to retake that crystal radio back to use for high-tech microelectronics. Same way small-size drones can use the same technology as the crystal radio used in the past. 

Wearable microchips can get their energy the same way from radio waves.  Those small microchips can also operate in things like artificial retina implants. Or they can control nanomachines inside the body. 

They can use ultrasound to make images from the body. But those small microchips can make many more things than just act for medical purposes. They can track material anomalies in aircraft bodies, search for leaks in spacecraft, and allow robots to get a sense of touch.

Those small microchips can also make it possible to create new types of computers. In those systems, microchips get energy from the radio waves and that allows us to put them on the plate there are no wires. Engineers can close those microchips into the Faraday cage. That protects this system against electromagnetic turbulence. And the radio transmitter-receiver can communicate with those microchips. 



https://www.freethink.com/health/pacemaker-powered-by-light


https://scitechdaily.com/mits-self-powered-sensor-automatically-harvests-ambient-magnetic-energy/


https://scitechdaily.com/revolutionizing-wireless-communication-how-tiny-chips-could-transform-medical-technology/


https://en.wikipedia.org/wiki/Crystal_radio

Comments

Popular posts from this blog

The LK-99 could be a fundamental advance even if it cannot reach superconductivity in 400K.

The next step in superconducting research is that LK-99 was not superconducting at room temperature. Or was it? The thing is that there is needed more research about that material. And even if it couldn't reach superconductivity in 400K that doesn't mean that material is not fundamental. And if LK-99 can maintain its superconductivity in 400K that means a fundamental breakthrough in superconducting technology.  The LK-99 can be hype or it can be the real thing. The thing is, anyway, that high-voltage cables and our electric networks are not turning superconducting before next summer. But if we can change the electric network to superconducting by using some reasonable material. That thing can be the next step in the environment. Superconductors decrease the need to produce electricity. But today cooling systems that need lots of energy are the thing that turn superconductors that need low temperatures non-practical for everyday use.  When the project begins there is lots of ent

Black holes, the speed of light, and gravitational background are things that are connecting the universe.

 Black holes, the speed of light, and gravitational background are things that are connecting the universe.  Black holes and gravitational waves: is black hole's singularity at so high energy level that energy travels in one direction in the form of a gravitational wave.  We normally say that black holes do not send radiation. And we are wrong. Black holes send gravitational waves. Gravitational waves are wave movement or radiation. And that means the black holes are bright gravitational objects.  If we can use water to illustrate the gravitational interaction we can say that gravitational waves push the surface tension out from the gravitational center. Then the other quantum fields push particles or objects into a black hole. The gravitational waves push energy out from the objects. And then the energy or quantum fields behind that object push them into the gravitational center.  The elementary particles are quantum fields or whisk-looking structures. If the gravitational wave is

The CEO of Open AI, Sam Altman said that AI development requires a similar organization as IAEA.

We know that there are many risks in AI development. And there must be something that puts people realize that these kinds of things are not jokes. The problem is how to take control of the AI development. If we think about international contracts regarding AI development. We must realize that there is a possibility that the contract that should limit AI development turns into another version of the Nuclear Non-Proliferation Treaty. That treaty didn't ever deny the escalation of nuclear weapons. And there is a big possibility that the AI-limitation contracts follow the route of the Nuclear Non-Proliferation Treaty.  The biggest problem with AI development is the new platforms that can run every complicated and effective code. That means the quantum computer-based neural networks can turn themselves more intelligent than humans. The AI has the ultimate ability to learn new things. And if it runs on the quantum-hybrid system that switches its state between binary and quantum states,