Skip to main content

The physics-based quantum tools will replace current AI networks.

  The physics-based quantum tools will replace current AI networks. 

The future of AI is material that involves mass memories, power sources, and data storage in one entirety. The next big step in neural networks is the material-based AI where carbon-fiber-based material is turned to the computer.  

The problem with regular AI-based neural networks is that the quantum computers that becoming more common will break any code that protects the neural network. And that means the future of networks is in a physics-based self-learning system. That is based on quantum computing. 

The programmable materials will replace current AI networks quite soon. The simplest version of that type of neural network is the microchip, whose kernel involves the AI programs. In that model, the AI is integrated into microchips. And that makes data-handling easier for that computer. That type of structure is not a physics-based material. 

But it tells about the route where the next-generation neural networks are going. The material-based solutions where intelligent material involves mass memory, and also integrated ability to handle data. The next-generation neural network can be the system where quantum entanglement is made into the same material as mass memories and other things. 

The next-generation computer can be a three-layer nanorod. That structure makes it act like the human brain. The quantum computer created by using three-layer nanorods can be as intelligent as the human brain. The quantum entanglement will created horizontally between photons or electrons trapped in the nanorod structure. Vertical entanglements transmit information between those layers. 

But the fact is that that kind of extremely complex nanostructure can have multiple layers of qubits. The atom-size quantum computers can hang in the nanorod. And that thing makes it possible to create new and powerful systems. 


"Learning with light: This is what the dynamics of a light wave employed inside a physical self-learning machine could look like. Crucial are both its irregular shape and that its development is reversed exactly from the time of its greatest extent (red). Credit: Florian Marquardt, MPL" ((https://techxplore.com/news/2023-09-physics-based-self-learning-machines-current-artificial.html)


"Artificial intelligence as a fusion of pinball and abacus: In this thought experiment, the blue positively charged pinball stands for a set of training data. The ball is launched from one side of the plate to the other. Credit: Florian Marquardt, MPL". (https://techxplore.com/news/2023-09-physics-based-self-learning-machines-current-artificial.html)

The mass memories are anchored in the nanorod that also transmits information forward. In that system, the atom-size quantum computers operate as staged waves. When electricity that transports information faces the group of those nano-size quantum computers those systems will process information and send it forward. In nanorods could be millions or even trillions of atom-size nanocomputers. 

There could be thousands of quantum entanglements in that kind of atom-size quantum computer. Electrons can have multiple quantum entanglements between them. Also, things like protons, neutrons, quarks, and gluons can form quantum entanglements. And in a hole in the net-structure of the nanotube can be one or more atom-size quantum computers. That makes those systems more powerful than any existing network. 

This is the reason why quantum materials are so interesting. By using extremely accurate photon and electron impulses the quantum system can drive material or its atoms and other particles so close to each other that they can make quantum entanglement between photons, electrons, or even protons that are in "pockets" of that material. 

The idea is that a photon trap where the single photon is trapped transfers energy into that superpositioned and entangled photon pair. The problem is that this thing requires an ability to control the material in its entirety and that makes the ADNR (Aggregated diamond nanorod) nanotubes interesting. 

In ANDR nanotubes carbon atoms are close to each other. And then that thing makes it possible to make stable "lockers" for photons. In ideal models, the next-generation AI-based structure involves all components like mass memories, power sources, and data handling units along with computer programs forming the entirety. 

The next-generation computer can be a nanotube, where a nano-size structure involves the quantum system. And in some other visions, the electric wire will turn into nano- or quantum-size computers. The system would be different from modern AI-based neural networks. The wire itself works as a computing system. And that thing makes the computer faster and more accurate than ever before. 


https://techxplore.com/news/2023-09-physics-based-self-learning-machines-current-artificial.html


https://en.wikipedia.org/wiki/Aggregated_diamond_nanorod


Comments

Popular posts from this blog

The LK-99 could be a fundamental advance even if it cannot reach superconductivity in 400K.

The next step in superconducting research is that LK-99 was not superconducting at room temperature. Or was it? The thing is that there is needed more research about that material. And even if it couldn't reach superconductivity in 400K that doesn't mean that material is not fundamental. And if LK-99 can maintain its superconductivity in 400K that means a fundamental breakthrough in superconducting technology.  The LK-99 can be hype or it can be the real thing. The thing is, anyway, that high-voltage cables and our electric networks are not turning superconducting before next summer. But if we can change the electric network to superconducting by using some reasonable material. That thing can be the next step in the environment. Superconductors decrease the need to produce electricity. But today cooling systems that need lots of energy are the thing that turn superconductors that need low temperatures non-practical for everyday use.  When the project begins there is lots of ent

Black holes, the speed of light, and gravitational background are things that are connecting the universe.

 Black holes, the speed of light, and gravitational background are things that are connecting the universe.  Black holes and gravitational waves: is black hole's singularity at so high energy level that energy travels in one direction in the form of a gravitational wave.  We normally say that black holes do not send radiation. And we are wrong. Black holes send gravitational waves. Gravitational waves are wave movement or radiation. And that means the black holes are bright gravitational objects.  If we can use water to illustrate the gravitational interaction we can say that gravitational waves push the surface tension out from the gravitational center. Then the other quantum fields push particles or objects into a black hole. The gravitational waves push energy out from the objects. And then the energy or quantum fields behind that object push them into the gravitational center.  The elementary particles are quantum fields or whisk-looking structures. If the gravitational wave is

The CEO of Open AI, Sam Altman said that AI development requires a similar organization as IAEA.

We know that there are many risks in AI development. And there must be something that puts people realize that these kinds of things are not jokes. The problem is how to take control of the AI development. If we think about international contracts regarding AI development. We must realize that there is a possibility that the contract that should limit AI development turns into another version of the Nuclear Non-Proliferation Treaty. That treaty didn't ever deny the escalation of nuclear weapons. And there is a big possibility that the AI-limitation contracts follow the route of the Nuclear Non-Proliferation Treaty.  The biggest problem with AI development is the new platforms that can run every complicated and effective code. That means the quantum computer-based neural networks can turn themselves more intelligent than humans. The AI has the ultimate ability to learn new things. And if it runs on the quantum-hybrid system that switches its state between binary and quantum states,