Skip to main content

Neutron lasers and neutrino beams are the next-generation tools.



Neutron lasers are neutron clouds that are trapped in magnetic tanks. And the main problem with that system is how to get neutrons. The powerful magnetic field can trap neutrons from nuclear reactors. Neutrons are polar particles so the magnetic system can pull them backward slowing their speed. And then the magnetic field can lock neutrons in a magnetic chamber or tank. 

Those systems have based on the idea that when neutrons are stressed with the energy they send neutron radiation. Those neutrons will capture from nuclear reactors. Then in the middle of the tank is the group of neutrons that are put in line. Then the energy will pump to those hovering neutrons. The neutron cloud that surrounds those entangled neutrons will pump energy to them. And they send neutron radiation in both directions.


Below: A diagram of the neutron laser.  


3         VV

1 (***********)

2 >>>>>>>>>

1 (**********)

3       AA


The diagram of the neutron laser is 

1) Neutron cloud

2) Linear positioned neutrons 

3) Outcoming energy 

The outcoming energy stress neutron cloud surrounds linear neutrons. And the beam is forming in that part of the system. Maybe a magnetic field can use to trap those neutrons in the laser system. If that is possible. The neutron laser can be a reality. And neutron-lasers can use as a model for neutrino lasers. 


Image 2) The system used to create the most powerful neutrino beam. " The design of the experiment is elegant — produce neutrinos and measure them at Fermilab, send them straight through 1,300 kilometers of earth, then measure them again in giant liquid-argon detectors at Sanford Lab. Credit: Fermilab". (Phys.org/How do you make the world's most powerful neutrino beam?) In image 2 you can see how difficult is to create a neutrino beam. And that means capturing those particles is even more difficult. 


Neutrino beam can use to research protons.


New sensors in Fermilab were used to test the ability to create a neutrino-particle beam. If that particle beam or "neutrino-ion cannon" is possible to create. That thing allows observing things like the proton's internal structures. The name of that test system is MINERvA. And it's the beginning of the next-generation detectors that can scan subatomic particles' internal structure. 

Neutrinos are ghost particles with very weak interaction. That means they can travel through entire planets without touching anything. And that makes it very hard to detect them. Because neutrinos are particles, they can use to send similar radiation to neutrons. But neutrino radiation is a very short wave. There is a possibility that some kind of magnetic field can trap neutrinos in the chamber. And then powerful radiation will aim at that neutrino cloud. 

When radiation stimulation ends. Neutrinos are sent similar radiation with neutrons. Neutrino beams can use to detect the internal structures of protons. Or they can use "super X-ray" systems that can see many things that are impossible to see another way. Another version is to use neutrinos like ion cannons use ions. But the problem is that neutrinos are not following magnetic fields with very high accuracy. 

Capturing neutrinos in a chamber is not a very easy mission. But if that is possible. It can create a new type of instrument that can observe the internal structures of protons. 


https://fnal.gov/pub/science/experiments/intensity/minerva.html

https://phys.org/news/2019-11-world-powerful-neutrino.html?deviceType=mobile

https://scitechdaily.com/ghostly-neutrinos-provide-groundbreaking-new-way-to-investigate-the-structure-of-protons/


https://en.wikipedia.org/wiki/Neutrino


https://likeinterstellartravelingandfuturism.blogspot.com/

Comments

Popular posts from this blog

The LK-99 could be a fundamental advance even if it cannot reach superconductivity in 400K.

The next step in superconducting research is that LK-99 was not superconducting at room temperature. Or was it? The thing is that there is needed more research about that material. And even if it couldn't reach superconductivity in 400K that doesn't mean that material is not fundamental. And if LK-99 can maintain its superconductivity in 400K that means a fundamental breakthrough in superconducting technology.  The LK-99 can be hype or it can be the real thing. The thing is, anyway, that high-voltage cables and our electric networks are not turning superconducting before next summer. But if we can change the electric network to superconducting by using some reasonable material. That thing can be the next step in the environment. Superconductors decrease the need to produce electricity. But today cooling systems that need lots of energy are the thing that turn superconductors that need low temperatures non-practical for everyday use.  When the project begins there is lots of ent

Black holes, the speed of light, and gravitational background are things that are connecting the universe.

 Black holes, the speed of light, and gravitational background are things that are connecting the universe.  Black holes and gravitational waves: is black hole's singularity at so high energy level that energy travels in one direction in the form of a gravitational wave.  We normally say that black holes do not send radiation. And we are wrong. Black holes send gravitational waves. Gravitational waves are wave movement or radiation. And that means the black holes are bright gravitational objects.  If we can use water to illustrate the gravitational interaction we can say that gravitational waves push the surface tension out from the gravitational center. Then the other quantum fields push particles or objects into a black hole. The gravitational waves push energy out from the objects. And then the energy or quantum fields behind that object push them into the gravitational center.  The elementary particles are quantum fields or whisk-looking structures. If the gravitational wave is

The CEO of Open AI, Sam Altman said that AI development requires a similar organization as IAEA.

We know that there are many risks in AI development. And there must be something that puts people realize that these kinds of things are not jokes. The problem is how to take control of the AI development. If we think about international contracts regarding AI development. We must realize that there is a possibility that the contract that should limit AI development turns into another version of the Nuclear Non-Proliferation Treaty. That treaty didn't ever deny the escalation of nuclear weapons. And there is a big possibility that the AI-limitation contracts follow the route of the Nuclear Non-Proliferation Treaty.  The biggest problem with AI development is the new platforms that can run every complicated and effective code. That means the quantum computer-based neural networks can turn themselves more intelligent than humans. The AI has the ultimate ability to learn new things. And if it runs on the quantum-hybrid system that switches its state between binary and quantum states,