Skip to main content

The dance of robots





Kimmo Huosionmaa

The modern way to teach robots is not similar than making programs. It could be like teaching children. In this scenario, the programmer would take the robot by hand, and then make the movement of robot’s hand with it. After this, the system will record the movements, what are needed to take the example the glass from the table. But how to teach the robot to dance. This is the question of the week.


 And there is needed the dancer, whose character would be digitized by using laser-scanners. Then the movements of this character would be transmitted in the robot’s digital mind. After this, the robot’s computers would control it’s hydraulics like the way, that the robot makes dance movements. This is the very effective way to teach the things to robots, and the same way we can teach the language to the computer. There would be a dictionary book in the memory of this machine, and then we are starting to talk to the system.


First, we must write the answers to the computer, but when we are asked many questions, and wrote enough answers, the computer starts to work more and more independently. In this program might be three layers of answers. The first answer could be the text, what is written by the user, but when the computer learns more words, that would ask only if the answer is correct. This computer would record the questions and compile it with answers, and then compile those answers in many other things, what are involved with similar actions.


Then the robot is asked to bring the milk to the table, would the action be first, that the programmer would take the robot to the freezer, and then the robot would take the milk bottle. But when the programmer asks to bring the screwdriver, would the computer or robot uses same actions when it used in the case of the milk bottle. But now it must find that thing from somewhere else. So it starts to open the doors of lockers, and look for the things, what looks like the screwdriver.


For this action, the robot needs the picture of the screwdriver. After that robot compiles the picture in its memory to the real situation. The system, what is used in Digital Scene Matching Area Correlation can also compile the shape of the other things, and that would make those machines more independently than ever before. The bases of learning are the ability to make networks with words and actions.


And the first things in this process are the most difficult. When the first world and the action for it are made, the robot, what is controlled by speech comes near to us, by step by step. This network would give the opportunity to make the robot, what learns things itself. And this kind of robots might be dangerous in wrong hands. In real life, robots might have access to Internet dictionaries, and they can compile the orders to the databases. In this case, the robot would get orders to get the spoon.


Then robot would find what to do if it is given the order of getting something and then look for the spoon from the Internet. This makes robot easier to learn everything. And in real case robot could find the orders to use some equipment from the Internet, and in this case that could make robot very dangerous, because the programmers don’t know, what robot have been learned. In the case of robotics, the extremely important thing is to control what robot can do. There would be robot what have learned city warfare tactics and knowledge of using weapons without that the programmers even know about this, will the situation became very dangerous. Self-learning brings the uncontrollable element to tests, and this might even cost human lives.




 http://crisisofdemocracticstates.blogspot.fi/p/the-dance-of-robots-modern-way-to-teach.html

Comments

Popular posts from this blog

Schrödinger's cat: and the limits of that idea.

"In quantum mechanics, Schrödinger's cat is a thought experiment concerning quantum superposition". (Wikipedia, Schrödinger's cat). But the same thing can use as model for many other thought experiments.  Sooner or later, or at least in the ultimate end of the universe, the Schrödinger's cat will turn into wave movement. The information that this cat involved exists but the cat does not exist in its material form. The information doesn't ever vanish. It just turns its shape.  We are all trapped in the universe and time. The universe is the space that is entirety to us. There are no confirmed other universities. But the multiverse is a logical continuum for the expanding galactic megastructures.  The problem with natural things is this. They are black and white. They exist or do not exist. Could there be something, that exists and not exists at the same time?  Scrödinger's cat is thinking experiment about case their cat is not dead or not alive. But in this...

The string theory offers a new way to calculate Pi.

"Scientists discovered a new series for pi through string theory research, echoing a 15th-century formula by Madhava. By combining Euler-Beta Functions and Feynman Diagrams, they modeled particle interactions efficiently. Credit: SciTechDaily.com" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Leap in Mathematics) People normally think that. The pi is the ratio of the circumference circle's circumference to the circle's diameter. The Pi is a mathematical constant 3.14159..., the endless decimal number. The Pi is interesting because developers can use that decimal number to make the encryption algorithms stronger.  The idea is that the encryptions program hides the message's original ASCII numbers by multiplicating those numbers with some decimal number. Or the system can add some numbers to those ASCII numbers.  "Aninda Sinha (left) and Arnab Saha (right). Credit: Manu Y" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Le...

There are always more than three actors in the real world.

"An international research team is advancing precision timekeeping by developing a nuclear clock using thorium isotopes and innovative laser methods, potentially transforming our understanding of physical constants and dark matter. (Artist’s concept.) Credit: SciTechDaily.com" (ScitechDaily, Unveiling the Thorium Nuclear Clock and Its Time-Twisting Secrets) From Three-body problem... There are no pure three-body systems in nature. There are always more than three components in the system. For making real three-body systems we must separate those three bodies from the environment. Otherwise, there are stable effects. But nobody can predict some effects like distant supernova explosions or sun eruptions.  And one of those things that affect all bodies is time. When radioactive materials decay. That affects the stability and symmetry of the object.  Energy levels affect the existence of things like neutrons. The thorium atom clocks are next-generation tools for time measurement....