Skip to main content

Fusion energy: are we any closer than before?



"This image shows a cutaway rendering of SPARC, a compact, high-field, DT burning tokamak, currently under design by a team from the Massachusetts Institute of Technology and Commonwealth Fusion Systems. Its mission is to create and confine a plasma that produces net fusion energy." (Credits:Image: CFS/MIT-PSFC — CAD Rendering by T. Henderson) (MIT, Validating the physics behind the new MIT-designed fusion experiment)


There are many reports of breakthroughs in fusion systems and fusion technology. And many people wait for new energy to form like the moon from the sky. The fusion energy would solve entire energy problems on Earth. But the problem is how to make a commercial fusion reactor. 

The temperature in those reactors is very high. If that plasma, that orbits the reactor in the wheel, or donut-shaped system touches the wall that thing would destroy the reactor immediately. In stars fusion happens in extremely high pressure and on Earth, the system must compensate for that pressure by increasing temperature. That means the fusion system must create a temperature. That is higher than the Sun's core. 

When fusion starts, light elements will melt together. Hydrogen's heavy isotopes, deuterium and tritium form helium when they melt together. The problem is that the system presses plasma using a magnetic field. Deuterium and tritium ions are both positive. And that means electromagnetic forces repel those particles away from each other. 

Some systems may make (as an example) deuterium ions, and tritium anions, that are negative tritium ions. That makes those ions pull each other together. And that makes it easier to impact those particles. However, the problem is that ions or monopolar ions are easier to control. Using magnetic fields. 

So the anion injection must made at the right point. The problem is how to deny anion injection touch with the wall of the torus. In tokamak reactors, positive magnetic fields push positive particles together and keep them off the wall. 



Tokamak reactor diagram.



One solution could be double tokamak where those toruses cross each other. In those cases, the system drives anions and ions into toruses, and then those particles impact in cross-points. 


In tokamak reactors, the anions are hard to control because the fusion system presses ion flow using the magnetic repel effect. So the system must use a linear structure. Linear fusion reactors are particle accelerators where the system drives plus and minus particles together. 

The problem is in ignition. When a laser beam ignites fusion. That thing causes an energy impulse. That destroys the particle flow. Electromagnetic repelling pushes those particles away from each other. And the outside magnetic field presses that plasma into its entirety. The problem is standing waves in the plasma ring. When fusion ignites it sends an energy pulse to that plasma wave. And that energy destroys the plasma structure and stops fusion. 

So how stars like the sun can create and maintain fusion? What keeps them together? The sun is a massive object. One thing that keeps plasma in its entirety in sun-scale objects is gravity. But the main thing that holds the sun together is the high energy fusion. That fusion turns 400 million tons of material into energy. That thing forms an interaction where the sun's core is forming low pressure. And gravity pulls particles in the sun's nucleus. 

Another thing that keeps fusion going is the electromagnetic repel. There is lots of plasma in the sun. And the electromagnetic interaction or repel effect happens around particles. The electromagnetic repel force from inside presses the particles together, and the thing that keeps fusion going on in the sun are gravity and electromagnetic forces together. 

So the electromagnetic repel pushes particles to the inside. It also affects particles. on the sun's shell. The magnetic fields and gravity keep holding the sun together. The problem with tokamak reactors is that they cannot benefit gravity. 


https://bigthink.com/the-future/nuclear-fusion-power-update/


https://news.mit.edu/2020/physics-fusion-studies-0929


https://en.wikipedia.org/wiki/Fusion_power


https://en.wikipedia.org/wiki/Tokamak


https://learningmachines9.wordpress.com/2024/02/06/fusion-energy-are-we-any-closer-than-before/

Comments

Popular posts from this blog

Schrödinger's cat: and the limits of that idea.

"In quantum mechanics, Schrödinger's cat is a thought experiment concerning quantum superposition". (Wikipedia, Schrödinger's cat). But the same thing can use as model for many other thought experiments.  Sooner or later, or at least in the ultimate end of the universe, the Schrödinger's cat will turn into wave movement. The information that this cat involved exists but the cat does not exist in its material form. The information doesn't ever vanish. It just turns its shape.  We are all trapped in the universe and time. The universe is the space that is entirety to us. There are no confirmed other universities. But the multiverse is a logical continuum for the expanding galactic megastructures.  The problem with natural things is this. They are black and white. They exist or do not exist. Could there be something, that exists and not exists at the same time?  Scrödinger's cat is thinking experiment about case their cat is not dead or not alive. But in this...

The string theory offers a new way to calculate Pi.

"Scientists discovered a new series for pi through string theory research, echoing a 15th-century formula by Madhava. By combining Euler-Beta Functions and Feynman Diagrams, they modeled particle interactions efficiently. Credit: SciTechDaily.com" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Leap in Mathematics) People normally think that. The pi is the ratio of the circumference circle's circumference to the circle's diameter. The Pi is a mathematical constant 3.14159..., the endless decimal number. The Pi is interesting because developers can use that decimal number to make the encryption algorithms stronger.  The idea is that the encryptions program hides the message's original ASCII numbers by multiplicating those numbers with some decimal number. Or the system can add some numbers to those ASCII numbers.  "Aninda Sinha (left) and Arnab Saha (right). Credit: Manu Y" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Le...

There are always more than three actors in the real world.

"An international research team is advancing precision timekeeping by developing a nuclear clock using thorium isotopes and innovative laser methods, potentially transforming our understanding of physical constants and dark matter. (Artist’s concept.) Credit: SciTechDaily.com" (ScitechDaily, Unveiling the Thorium Nuclear Clock and Its Time-Twisting Secrets) From Three-body problem... There are no pure three-body systems in nature. There are always more than three components in the system. For making real three-body systems we must separate those three bodies from the environment. Otherwise, there are stable effects. But nobody can predict some effects like distant supernova explosions or sun eruptions.  And one of those things that affect all bodies is time. When radioactive materials decay. That affects the stability and symmetry of the object.  Energy levels affect the existence of things like neutrons. The thorium atom clocks are next-generation tools for time measurement....