Skip to main content

AI is the next-generation tool for material research.


One of the reasons why researchers are interested in the origins of life is that life is formed in stages. Before the first prokaryotes formed on Earth. The Primordial Sea formed complicated nanostructures. And the thing. What makes those nanostructures interesting is those chemicals were in certain forms, repeating like in fractals. 

Those chemical fractals can use in nanotechnology. And AI is a suitable tool for observing and controlling chemical reactions in environments where radiation levels, electricity, and other things. The difference between nanomaterials and regular materials is that in nanomaterials the angles of chemical bonds and the chemical mixtures that make the material are carefully planned and completed. 

Researchers created nanomaterial that is 10 times lighter and four times harder than steel. They just created the DNA structure and coated it in glass. That glass-coated DNA can be tougher than even diamond. There is possible to coat this structure using a carbonite crystal layer. The glass layer makes it possible to create the next-generation materials and there is possible to coat that glass layer by using other materials. 



"Researchers from the University of Connecticut and colleagues have created a highly durable, lightweight material by structuring DNA and then coating it in glass. The resulting product, characterized by its nanolattice structure, exhibits a unique combination of strength and low density, making it potentially useful in applications like vehicle manufacturing and body armor. (Artist’s concept.)" (ScitechDaily.com/Scientists Create New Material Five Times Lighter and Four Times Stronger Than Steel)



"A new model describes the self-organization of catalysts involved in metabolic cycles. Different species of catalysts (represented by different colors) form clusters and can chase each other. Credit: MPI-DS / LMP" (Phys.org/Exploring the self-organizing origins of life.)


"Side view of the LEGO gradient mixer during (A) its initial position and (B) its horizontal tilting phase. (1) 3D printed centrifuge-tube holder. (2) Spinning motor to rotate the tubes while in horizontal position. (3) Turning servo motor responsible for tilting the tubes horizontally. (4) Large grey gear connecting the two motors with its small gear complement. (5) The scaffold holding the structure together. (6) The LEGO controller for orchestrating the motions of the two motors. The black cables are traced in white for clarity". (https://www.eurekalert.org/multimedia/991785)


The LEGO robots made DNA machines. And AI can revolutionize battery production. 


The ability to use things like LEGOs for next-generation tools is interesting. If we think of regular LEGOs. We could make temporary houses by using those regular toys. So normal LEGOs have capacity. But the AI can give many new abilities to regular systems. 

The AI-controlled LEGO robots can even create the nanostructures like DNA molecules. In those models, the robot can make those nanosystems themselves. Or they can create next-generation robots that can make those things. The fact is that AI-controlled robots can have surprising abilities. 

AI and robots are the next-generation tools for battery development. But it also can use to make extremely complicated structures like enzymes and other kinds of things. Battery production is only one example of the abilities of AI-based robots. 

The AI-based technology allows the following energy production and voltage levels of batteries in certain conditions. That data gives more abilities to make new and more powerful batteries that also are environmental-friendly. The AI can follow things like radiation, humidity, and temperature. 

Then it can follow the strength of the acids, enzymes, and chemical mixtures in the batteries. The robot that operates at the assembly line makes it possible. Those assembly systems use special gas and precisely calculated radiation combinations in those rooms. Those things protect chemical combinations in the battery assembly line and deny those chemical compounds touch things like oxygen too early. 



https://www.eurekalert.org/news-releases/995439


https://interestingengineering.com/science/robot-made-of-legos-produces-dna-machines


https://phys.org/news/2023-08-exploring-self-organizing-life.html


https://scitechdaily.com/scientists-create-new-material-five-times-lighter-and-four-times-stronger-than-steel/


Comments

Popular posts from this blog

The LK-99 could be a fundamental advance even if it cannot reach superconductivity in 400K.

The next step in superconducting research is that LK-99 was not superconducting at room temperature. Or was it? The thing is that there is needed more research about that material. And even if it couldn't reach superconductivity in 400K that doesn't mean that material is not fundamental. And if LK-99 can maintain its superconductivity in 400K that means a fundamental breakthrough in superconducting technology.  The LK-99 can be hype or it can be the real thing. The thing is, anyway, that high-voltage cables and our electric networks are not turning superconducting before next summer. But if we can change the electric network to superconducting by using some reasonable material. That thing can be the next step in the environment. Superconductors decrease the need to produce electricity. But today cooling systems that need lots of energy are the thing that turn superconductors that need low temperatures non-practical for everyday use.  When the project begins there is lots of ent

Black holes, the speed of light, and gravitational background are things that are connecting the universe.

 Black holes, the speed of light, and gravitational background are things that are connecting the universe.  Black holes and gravitational waves: is black hole's singularity at so high energy level that energy travels in one direction in the form of a gravitational wave.  We normally say that black holes do not send radiation. And we are wrong. Black holes send gravitational waves. Gravitational waves are wave movement or radiation. And that means the black holes are bright gravitational objects.  If we can use water to illustrate the gravitational interaction we can say that gravitational waves push the surface tension out from the gravitational center. Then the other quantum fields push particles or objects into a black hole. The gravitational waves push energy out from the objects. And then the energy or quantum fields behind that object push them into the gravitational center.  The elementary particles are quantum fields or whisk-looking structures. If the gravitational wave is

The CEO of Open AI, Sam Altman said that AI development requires a similar organization as IAEA.

We know that there are many risks in AI development. And there must be something that puts people realize that these kinds of things are not jokes. The problem is how to take control of the AI development. If we think about international contracts regarding AI development. We must realize that there is a possibility that the contract that should limit AI development turns into another version of the Nuclear Non-Proliferation Treaty. That treaty didn't ever deny the escalation of nuclear weapons. And there is a big possibility that the AI-limitation contracts follow the route of the Nuclear Non-Proliferation Treaty.  The biggest problem with AI development is the new platforms that can run every complicated and effective code. That means the quantum computer-based neural networks can turn themselves more intelligent than humans. The AI has the ultimate ability to learn new things. And if it runs on the quantum-hybrid system that switches its state between binary and quantum states,