The next step for artificial intelligence is the artificial general intelligence, AGI. That is the tool that connects every computer under one dome. The AGI is the self-learning system that develops its models and interconnects them with sensors that bring new data for the system. That means we can interconnect every single computer in the world in one entirety. We can think that social media is something new. We forget that a long time before Facebooks were the letter clubs. The “post offices” where people can send letters to people, who could be pseudonyms.
Social media is not a new thing, and Facebook and other applications are the products of a long route that started in Ancient Rome and Greece where wall writing or graffiti was the beginning of social media. Social media interconnects people from around the world. The new thing that the net brought was speed and maybe the price of those systems is low. But as we know there are no free lunches. The thing that doesn’t cost anything can have the highest price. The ability to create singularity between computers brings the ability to share and receive information with new forces.
And then the new step for AI and computers is the brain-computer interface, BCI. The BCI means the ability to control computers using the brain waves, or EEG. The system can interact with computers and it can operate also between people. This system can interconnect all animals and humans in one entirety. And there are risks and opportunities about that model. If we make things wrong we create a collective mind. There is one opinion. So we interconnect our minds and computers into giant brains. That is a very sad thing. That thing destroys our own creativity.
The biggest problem with social media, AI-based dating applications, and finally singularity is that the system destroys diversity. People want to discuss and date only people who are similar to them. That means our way of thinking starts to turn homogenous. That causes a situation where we have no people who disagree with us. We can hear only ideas and opinions that please us. We take only people who are similar to us, in our social networks. So, in the worst case, we and our networks operate like some algorithm that recycles data through the model. That means we, our team, or our network will not get anything new to our model. We just recycle something if we don’t accept diversity.
Our mind needs ideas and motivation for making new things. And where can we get those new ideas? We can discuss those things. Or we can get information that some other party made. And then we can work and refine the information that we can get from net pages and other media. Without opponents our productivity and creativity die, because we have nobody who brings new ideas into our minds.
In some models, the network can develop things by playing games against some other network. The network creates a simulation and then the model tries to fight against that simulation. If a model wins there is no need to develop it. But if the model loses it requires adjustment. And that means the system requires data and then it requires optimism.
In the novel “Peace on Earth” the author Stanislaw Lem introduced a model where the simulator creates a model and the other fights against that model. The better simulation becomes a model. Until something creates a new, better model.
There is another way to operate as a network. The network can accept individually operating members. The idea is that every operator that is connected to the network is autonomous. Those subsystems operate autonomously when they collect data. When the network doesn’t need order it can be chaotic. And when an actor sees something that requires a lot of information, the roll call comes over the network. “Everybody stop, the network needs your capacity”. That commands those autonomous subsystems to leave their work and start to solve bigger problems.
So, the network operates as a whole when it requires that ability. The network can have subsystems and that means as in the case of an extreme crisis those subnetworks create models that should handle that problem.
Those subsystems can be individual actors. When the individual actors play against each other, that lost actor joins with the winner and starts to develop a model that won. Then the actor couples start to play against each other, and again. The lost team joins the team that won and then starts to develop the tactics that won the game. The actor groups or networks expand when new actors join bigger entities.
Those subsystems start to play against each other. When some subsystem loses, that means its tactics are lost. Then that lost actor joins the winner's team and gives its capacity to that team, or network. The network always drops lost tactics or action models until there are two networks against each other. And the better wins. This is one way to create the answer and solution for complicated problems. The expanding network could be the thing that brings solutions to many problems. When the network is in chaotic mode actors search data for it.
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.