We are waiting for the new step in the AI development and research process. Many big technology bosses say that this is the end of algorithms. And the next step is self-learning AI. That system can communicate with robots and all other systems. The self-learning system can learn in two ways. It can create new models that it uses in certain situations. Or it can connect a new module into itself. The reason why advances in AI go to self-learning systems is simple.
New algorithms are very complicated. And their training requires so much time that the self-learning models are better. The thing that makes this kind of thing very complicated is that the new AI must operate in larger areas. They must control things like street-operating robots. So they need a more effective way to learn things. The street-operating robots can use platforms that look like computer games to learn how to cross the roads, and where those robots find things like apples if they go to shop for their owner. But then those robots must face unexpected things.
Robots can share their mission records with the entire system. And that helps to develop methods on how to operate in natural situations. Basically, the difference between a learning system and a normal system is that the learning system can create new models and then compare the original model with that new model. There are parameters that determine which way to act is better. And if the new model is better, it replaces the old one. This means that the fixed model turns into a flexible model. That model lives with its environment.
That thing is the AGI or artificial general intelligence. That kind of AI is everywhere, and it can connect multiple different systems that seem different under one dome. The biggest difference between AI and modern algorithms is that the system can bring new data from sensors to data flow that travels in the system. The AGI is a system that might be "god-like" but if that system cannot create genetic codes like manufacture the DNA it might have no ability to control living organisms. However, the system has many ways to manipulate evolution.
The AGI can make couples that have certain skills. The fact is that dating applications are effective for dating. And it's possible that the AGI can also make it possible to select perfect spouses. So people who are not "perfect" leave without a couple. And that means only people who are suitable, or similar can make descendants. This causes segregation and loss of diversity.
And that is a sad thing for humans. Self-learning AI is a tool that can learn from its mistakes. It learns what to do, and what it must not do. The thing is that the self-learning AI is the new common tool that can make almost everything. The system learns like humans. And that makes it the so-called AGI. One tool fits all. The system can control things like robots.
Robots can collect data for that system. The AGI works like this. One robot sits on a chair and then the teacher teaches things for, and through that thing. Then that robot shares new things across the entire AI and network. For training that kind of system, a lot of information. And companies like Meta have that data. And AI makes it possible to create things like AI agents that sneak and observe what happens in the network. Robots can learn from other robots. When one robot makes a mistake, it scales over the network. Other robots must know that they don’t make the same mistake again.
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.