Skip to main content

MIT researchers created a sensor that harvests energy from its environment.



"This energy management interface is the "brain" of a self-powered, battery-free sensor that can harvest the energy it needs to operate from the magnetic field generated in the open air around a wire. Credit: Courtesy of the researchers, edited by MIT News" (/news-media/self-powered-sensor-automatically-harvests-magnetic-energy)

There is nothing new about sensors that harvest energy from the sunlight. The thing that makes the new sensor fundamental is that it can also operate in complete darkness. This system makes it possible for employers to make sensor installations in narrow places, where is hard to pull wires. 

Because these kinds of sensors can operate in darkness, researchers can use the same technology to create the power sources for the miniature robots. That new technology makes those robots able to operate in areas. Where there is no sunlight. 

The new sensor is fully battery-free. It can harvest its energy from the environment. The difference between solar-panel systems is that this system uses vibrations and electromagnetic fields as energy sources.  And that means it's the ultimate tool for making sensors that observe things like diesel engines. 

Because this new sensor can operate in darkness,  it's easy to install. The same technology that is used in this tiny sensor can used in radio transmitter-recevers. 

That allows eavesdropping systems that are independent of the battery. Even if those energy harvesters can harvest only low voltages they can store energy into capacitors. And then that energy can used in remote-control systems. The ability to collect energy from the environment is an interesting thing. Nanorobots can use this technology as their energy source. 

In the same way, that kind of thing can used for nano-size microchips. In those systems, a wireless system transports data to the computing system wirelessly. The system uses the same radio waves as the power source. The problem with nanotechnical systems is that electricity jumps over their tiny switches. And that requires new ways to transport electricity and information to them. 


https://meche.mit.edu/news-media/self-powered-sensor-automatically-harvests-magnetic-energy


https://news.mit.edu/2024/self-powered-sensor-harvests-magnetic-energy-0118


Comments

Popular posts from this blog

The LK-99 could be a fundamental advance even if it cannot reach superconductivity in 400K.

The next step in superconducting research is that LK-99 was not superconducting at room temperature. Or was it? The thing is that there is needed more research about that material. And even if it couldn't reach superconductivity in 400K that doesn't mean that material is not fundamental. And if LK-99 can maintain its superconductivity in 400K that means a fundamental breakthrough in superconducting technology.  The LK-99 can be hype or it can be the real thing. The thing is, anyway, that high-voltage cables and our electric networks are not turning superconducting before next summer. But if we can change the electric network to superconducting by using some reasonable material. That thing can be the next step in the environment. Superconductors decrease the need to produce electricity. But today cooling systems that need lots of energy are the thing that turn superconductors that need low temperatures non-practical for everyday use.  When the project begins there is lots of ent

Black holes, the speed of light, and gravitational background are things that are connecting the universe.

 Black holes, the speed of light, and gravitational background are things that are connecting the universe.  Black holes and gravitational waves: is black hole's singularity at so high energy level that energy travels in one direction in the form of a gravitational wave.  We normally say that black holes do not send radiation. And we are wrong. Black holes send gravitational waves. Gravitational waves are wave movement or radiation. And that means the black holes are bright gravitational objects.  If we can use water to illustrate the gravitational interaction we can say that gravitational waves push the surface tension out from the gravitational center. Then the other quantum fields push particles or objects into a black hole. The gravitational waves push energy out from the objects. And then the energy or quantum fields behind that object push them into the gravitational center.  The elementary particles are quantum fields or whisk-looking structures. If the gravitational wave is

The CEO of Open AI, Sam Altman said that AI development requires a similar organization as IAEA.

We know that there are many risks in AI development. And there must be something that puts people realize that these kinds of things are not jokes. The problem is how to take control of the AI development. If we think about international contracts regarding AI development. We must realize that there is a possibility that the contract that should limit AI development turns into another version of the Nuclear Non-Proliferation Treaty. That treaty didn't ever deny the escalation of nuclear weapons. And there is a big possibility that the AI-limitation contracts follow the route of the Nuclear Non-Proliferation Treaty.  The biggest problem with AI development is the new platforms that can run every complicated and effective code. That means the quantum computer-based neural networks can turn themselves more intelligent than humans. The AI has the ultimate ability to learn new things. And if it runs on the quantum-hybrid system that switches its state between binary and quantum states,