Skip to main content

Machine learning boosts the drug design.

   Machine learning boosts the drug design. 


"Cambridge researchers, in collaboration with Pfizer, have created an AI-driven ‘reactome’ platform to predict chemical reactions, expediting drug design. This innovative approach utilizes machine learning and automated experiments, significantly improving the accuracy and speed of pharmaceutical development. Credit: SciTechDaily.com" (ScitechDaily, AI-Powered Drug Design: A Leap in Pharmaceutical Innovation)



Researchers created an AI-based system that they can use for drug design. That system can control complicated structures and how to make those structures work right. When a drug designer starts work that person selects the point where that drug wants to effect. The drug can affect cell's genomes, it can affect ion pumps or lipids that form the cell's shell. 

The problem with drug design is that the complicated molecules require a fully controlled environment. This is the new thing in AI and how to benefit that thing. The AI is the language model that controls multiple subsystems. Those subsystems control the reaction chambers and many other things. Quantum computers and other new, and powerful calculation methods can use to simulate those new complicated molecule's behavior in cells. 

The nanomachines are similar to the drug molecules. There is a vision about nanomachines that can act as medicines. Some of them are like viruses. They are heading to the wanted cell group. And then those nanomachines pump protein fibers and enzymes to the targeted cell. Those things can destroy its cell organelles or DNA or simply fill the cell with protein fibers. Or the synthetic retrovirus transports artificial DNA into the targeted cells, and that DNA can cause the cell to die. That kind of thing can be the future of medicine. 

The problem is that there is a silent pandemic in the world. Silent pandemia is an antibiotic-resistant bacteria. Antibiotic-resistant bacteria is a bigger problem than any COVID-19 can ever be. 

Researchers testing nanomachines and nanopolymers against those bacteria. The nanopolymers are like springs that open inside the cell and destroy its shell. Another way that nanopolymers can act is that they will connect themselves to the cell's outer shell. Then those long polymer fiibers just pull electricity out from the cell's bark. That finishes the ion pump's action. 

The nanomachines can destroy the cell organelles when they slip into the cell. The difference between nanomachines and nanopolymers to traditional medicines is that their action is mechanical. Complicated systems require complicated and highly advanced control systems. The design and development of complicated molecules are very accurate work. And the most dangerous case is that nanomachines can get out of control. That thing can turn entire humans into liquid when nanomachines break the cell barks. 


https://scitechdaily.com/ai-powered-drug-design-a-leap-in-pharmaceutical-innovation/

Comments

Popular posts from this blog

The LK-99 could be a fundamental advance even if it cannot reach superconductivity in 400K.

The next step in superconducting research is that LK-99 was not superconducting at room temperature. Or was it? The thing is that there is needed more research about that material. And even if it couldn't reach superconductivity in 400K that doesn't mean that material is not fundamental. And if LK-99 can maintain its superconductivity in 400K that means a fundamental breakthrough in superconducting technology.  The LK-99 can be hype or it can be the real thing. The thing is, anyway, that high-voltage cables and our electric networks are not turning superconducting before next summer. But if we can change the electric network to superconducting by using some reasonable material. That thing can be the next step in the environment. Superconductors decrease the need to produce electricity. But today cooling systems that need lots of energy are the thing that turn superconductors that need low temperatures non-practical for everyday use.  When the project begins there is lots of ent

Black holes, the speed of light, and gravitational background are things that are connecting the universe.

 Black holes, the speed of light, and gravitational background are things that are connecting the universe.  Black holes and gravitational waves: is black hole's singularity at so high energy level that energy travels in one direction in the form of a gravitational wave.  We normally say that black holes do not send radiation. And we are wrong. Black holes send gravitational waves. Gravitational waves are wave movement or radiation. And that means the black holes are bright gravitational objects.  If we can use water to illustrate the gravitational interaction we can say that gravitational waves push the surface tension out from the gravitational center. Then the other quantum fields push particles or objects into a black hole. The gravitational waves push energy out from the objects. And then the energy or quantum fields behind that object push them into the gravitational center.  The elementary particles are quantum fields or whisk-looking structures. If the gravitational wave is

The CEO of Open AI, Sam Altman said that AI development requires a similar organization as IAEA.

We know that there are many risks in AI development. And there must be something that puts people realize that these kinds of things are not jokes. The problem is how to take control of the AI development. If we think about international contracts regarding AI development. We must realize that there is a possibility that the contract that should limit AI development turns into another version of the Nuclear Non-Proliferation Treaty. That treaty didn't ever deny the escalation of nuclear weapons. And there is a big possibility that the AI-limitation contracts follow the route of the Nuclear Non-Proliferation Treaty.  The biggest problem with AI development is the new platforms that can run every complicated and effective code. That means the quantum computer-based neural networks can turn themselves more intelligent than humans. The AI has the ultimate ability to learn new things. And if it runs on the quantum-hybrid system that switches its state between binary and quantum states,