Skip to main content

The interaction between matter and energy is complicated.


Particles are one form of energy.


Massive explosions in the universe create gold and other heavy elements. But they can also help model the Big Bang. Kilonovas, or colliding neutron stars, make shockwaves that turn the gas cloud around them into gold. The high-power shockwaves pull gas with such high density and energy that it forms a fusion reaction around Kilonova. The impact wave just pushes atoms together and forms uranium and other heavy elements.

Kilonovas help to make models about the Big Bang. When we think that two shockwaves travel across space one after the other, the event looks like this: energy travels asymmetrically away from the first shockwave. In that case, the vacuum where there were superstitions or standing quantum fields pulled energy out of the shockwave.

The problem with those two shockwaves is that the first shockwave traveled in a "vacuum". There was more energy that traveled out of it than the energy that traveled in it. The second shockwave traveled through radiation that pumped energy into it. In this model, the second shockwave had more energy, which increased its mass. Then the outer shockwave stopped, and those two shockwaves impacted. Then the superstrings in that bubble started to whirl.

When we think of the Big Bang as an event where all the material and energy that we can see formed, the dark matter and dark energy could form at different times at different energy levels than the visible material. When the Big Bang started, it was probably high energy, and that was the moment when the Schwinger effect started determining the energy level of material. After that, the universe started to turn colder.

In this model. The energy level of each point on the timeline where energy turns into particles, forming matter, determines whether particles can interact with each other. Dark matter interacts with visible matter through gravitational waves. That means dark matter particles or things that send gravitational radiation that we think of as dark matter are so small or otherwise different than visible matter.



The term dark matter means matter's or a particle's ability to interact with other particles. The visibility of the material indicates the ability of the particles to interact with each other. If another particle in that interaction is so small, and another is so big. The radiation impact on the larger particle impacts such a small area that it cannot push the bigger particle. Or it loads so little energy into that bigger particle that we cannot see that reflection.

Particles can change the wavelength of the radiation or wave movement. When a smaller particle sends wave movement to a bigger particle, that energy fills the bigger particle. Then the bigger particle sends energy forward to the system.

Every fundamental interaction has wave and particle forms. Those four fundamental interactions involve strong and weak nuclear forces, electromagnetism, and gravitation. There is a possibility that gravitation is an interaction between gluons and hypothetical gravitons. As well as strong nuclear forces, there is an interaction between gluons and quarks. Electromagnetism is the interaction between an atom's nucleus and electron shells.


Could (Grand Unified Theory)GUT theory go like this? 



So if we think like this, the series of fundamental interactions from the smallest to the largest entireties goes like this:


Graviton>gluon>quark>quark gourps (protons and neutrons)>atom's nucleus (proton and neutron groups)>electron shells


">>" means the direction of energy.


The Grand Unified Theory (GUT) goes like this: When gluon sends radiation to a quark, the quark transforms its wavelength longer. Then the quark groups, or protons and neutrons, transform that wavelength into the wavelength of a weak nuclear force. Then the atom's nucleus sends that radiation in its entirety to the electron shells.

And finally, the atom emits the radiation in its entirety. The gravitational field would be a particle that is between a gluon and a quark. So in that model, gravitation is an interaction between gluons and hypothetical gravitons. That explains why gravitational radiation has such a short wavelength.

There is a model that says superstrings are forming elementary particles. Those superstrings are like small quantum fibers. The superstrings are the things that form wave movement and material. That means elementary particles look like yarn balls. In the case that a very small particle sends wave movement to a bigger particle that looks like a yarn ball of superstrings, radiation can turn those superstrings away from their route. And that superstring, or radiation peak, travels through the particle. But during that process, the radiation transfers little energy to that particle.

That means particles can turn one form of energy into another. Each type of one of the four fundamental forces is energy. The fundamental forces are weak nuclear forces and strong nuclear forces, electromagnetism, and gravitation. And each of those four fundamental forces has different wavelengths. When one type of radiation impacts an elementary particle, it loads energy into it. Then that particle sends its extra energy to its environment. So particles can transform the wavelength of radiation.

The interaction between matter and energy is complicated. We can say that the Big Bang formed all visible matter in the universe. But it's hard to explain how that thing happened. So when we think about the Big Bang and the formation of material, we know that if the Schwinger effect created that event, there must have been two impacting radiation layers.


Comments

Popular posts from this blog

The LK-99 could be a fundamental advance even if it cannot reach superconductivity in 400K.

The next step in superconducting research is that LK-99 was not superconducting at room temperature. Or was it? The thing is that there is needed more research about that material. And even if it couldn't reach superconductivity in 400K that doesn't mean that material is not fundamental. And if LK-99 can maintain its superconductivity in 400K that means a fundamental breakthrough in superconducting technology.  The LK-99 can be hype or it can be the real thing. The thing is, anyway, that high-voltage cables and our electric networks are not turning superconducting before next summer. But if we can change the electric network to superconducting by using some reasonable material. That thing can be the next step in the environment. Superconductors decrease the need to produce electricity. But today cooling systems that need lots of energy are the thing that turn superconductors that need low temperatures non-practical for everyday use.  When the project begins there is lots of ent

Black holes, the speed of light, and gravitational background are things that are connecting the universe.

 Black holes, the speed of light, and gravitational background are things that are connecting the universe.  Black holes and gravitational waves: is black hole's singularity at so high energy level that energy travels in one direction in the form of a gravitational wave.  We normally say that black holes do not send radiation. And we are wrong. Black holes send gravitational waves. Gravitational waves are wave movement or radiation. And that means the black holes are bright gravitational objects.  If we can use water to illustrate the gravitational interaction we can say that gravitational waves push the surface tension out from the gravitational center. Then the other quantum fields push particles or objects into a black hole. The gravitational waves push energy out from the objects. And then the energy or quantum fields behind that object push them into the gravitational center.  The elementary particles are quantum fields or whisk-looking structures. If the gravitational wave is

The CEO of Open AI, Sam Altman said that AI development requires a similar organization as IAEA.

We know that there are many risks in AI development. And there must be something that puts people realize that these kinds of things are not jokes. The problem is how to take control of the AI development. If we think about international contracts regarding AI development. We must realize that there is a possibility that the contract that should limit AI development turns into another version of the Nuclear Non-Proliferation Treaty. That treaty didn't ever deny the escalation of nuclear weapons. And there is a big possibility that the AI-limitation contracts follow the route of the Nuclear Non-Proliferation Treaty.  The biggest problem with AI development is the new platforms that can run every complicated and effective code. That means the quantum computer-based neural networks can turn themselves more intelligent than humans. The AI has the ultimate ability to learn new things. And if it runs on the quantum-hybrid system that switches its state between binary and quantum states,