Skip to main content

Dark matter can form similar structures as visible matter.


There is a massive galaxy with no dark matter. That thing tells us that dark matter is not necessary for galaxy formation. The galaxies without dark matter give hints that dark matter can interact with visible matter in some other ways than just by gravitation. Galaxies with no dark matter tell that. Dark matter is not divided homogeneously around the universe. There are glimpses like dark matter stars. 

Researchers search dark matter glimpses by measuring the mass of invisible objects. All gravitational centers are forming material clouds around them. Black holes are visible to us because their material disk's energy level is so high. That means we can see the X-ray and gamma rays. And sometimes telescopes see the material disk around black holes. But if there is no material disk and another mark about the black hole in the glimpse of molecular clouds. That means there is hiding some object. That is invisible but not a black hole. 


"Comparison between a conventional galaxy (ESO 325-G004) enveloped in a halo of dark matter, occupying the heaviest plate on the weight scale, and the galaxy NGC 1277 (on the left), in which the study of the mass distribution reveals the absence of dark matter. Credit: Design: Gabriel Pérez Díaz (IAC). Image of NGC 1277: NASA, ESA, and M. Beasley (IAC). Image of ESO 325-G004: NASA, ESA, and The Hubble Heritage Team (STScI/AURA); J. Blakeslee (Washington State University)" (ScitechDaily.com/Cosmic Mystery: A Massive Galaxy Defying Dark Matter Theories)



If there is an object invisible to us. But so light that it cannot be any kind of black hole. That could be a dark matter glimpse. And that thing means that dark matter is more mystic than nobody expected. Or maybe gravitation is forming a rotating disk-shaped structure that just throws dark matter away from the galaxy. Theoretically, dark matter can form similar structures as visible material. Nobody has seen dark matter yet. And that means all things that are written about it is the hypothesis. 

There is a theory that during the Big Bang. The energy turned to material in sequences. And in that model, there is a material that energy level is so much higher than visible material that this material cannot interact with visible material in other ways than through gravitation. There is the possibility that those particles are so small that we see only gravitational interaction of that material. 





Above: 

The image introduces elementary particles and the standard model of physics. The problem is that we don't know all structures that fermions and leptons can make. We know that electrons orbit the atoms or their nucleus. Same way muons and other fermions should orbit the atom's nucleus. But we have no evidence that there are atoms that have electrons replaced by muons. There is more about this topic forward in this text. 


But are hypothetical dark matter particles: 


An axion is a hypothetical elementary particle originally postulated by the Peccei–Quinn theory in 1977 to resolve the strong CP problem in quantum chromodynamics (QCD). If axions exist and have low mass within a specific range, they are of interest as a possible component of cold dark matter. (Wikipedia/Axion). 

The spin and mass of that hypothetical particle is 0. The problem is that an axion cannot have a gravitational effect if its mass is 0. There is the possibility that the spin of the axion is so high that it flows in its quantum field. An extremely fast spin could turn the hypothetical axion into a form that looks like a dumbbell. 

In that model energy level of axions is extremely high. That means the axion cannot interact straight with the material because it sends radiation or wave movement that pushes particles or their quantum fields away. And that means the high-energy axion can travel through visible material. 


WIMP (Weakly Interacting Massive Particles)


In that model, WIMP is the thing that forms "hot dark matter". The explanation of why WIMP interacts only through gravitation is a mystery. But there is the possibility that the energy level of WIMP makes it impossible that hypothetical WIMP can interact with visible material than through gravitation. 

If WIMP is extremely high energy particles. That makes them so small. That interaction between them and other particles is extremely weak. The surface area of radiation that WIMP sends is so small that the interaction between WIMP and visible material is impossible or almost impossible to detect. But can WIMP create similar structures as visible material? That is the big question. 


The problem is that we don't know all structures that Fermions can create. 


When we think about the form of material, we must understand one thing. Even in visible materials, all particles cannot create stable forms. Bosons are transportation particles of four fundamental interactions. And they cannot form stable particles like baryonic hadrons. 

Electrons are the most well-known leptons. But they are not only fermions. Things like muons also are leptons. But there is no observation about atoms where muons replaced electrons. There are six types of leptons. And we can put only electrons in its place. And logically all fermion particles should form shells for atoms like electrons. 

Also, fermions are not always form stable structures. Things like muons are not forming stable structures even if they are similar to electrons. So we don't even know all structures that fermions can create.



https://en.wikipedia.org/wiki/Axion


https://en.wikipedia.org/wiki/Muon


https://en.wikipedia.org/wiki/Quantum_chromodynamics


https://en.wikipedia.org/wiki/Strong_CP_problem


https://en.wikipedia.org/wiki/CP_violation


https://en.wikipedia.org/wiki/Weakly_interacting_massive_particle


Comments

Popular posts from this blog

The LK-99 could be a fundamental advance even if it cannot reach superconductivity in 400K.

The next step in superconducting research is that LK-99 was not superconducting at room temperature. Or was it? The thing is that there is needed more research about that material. And even if it couldn't reach superconductivity in 400K that doesn't mean that material is not fundamental. And if LK-99 can maintain its superconductivity in 400K that means a fundamental breakthrough in superconducting technology.  The LK-99 can be hype or it can be the real thing. The thing is, anyway, that high-voltage cables and our electric networks are not turning superconducting before next summer. But if we can change the electric network to superconducting by using some reasonable material. That thing can be the next step in the environment. Superconductors decrease the need to produce electricity. But today cooling systems that need lots of energy are the thing that turn superconductors that need low temperatures non-practical for everyday use.  When the project begins there is lots of ent

Black holes, the speed of light, and gravitational background are things that are connecting the universe.

 Black holes, the speed of light, and gravitational background are things that are connecting the universe.  Black holes and gravitational waves: is black hole's singularity at so high energy level that energy travels in one direction in the form of a gravitational wave.  We normally say that black holes do not send radiation. And we are wrong. Black holes send gravitational waves. Gravitational waves are wave movement or radiation. And that means the black holes are bright gravitational objects.  If we can use water to illustrate the gravitational interaction we can say that gravitational waves push the surface tension out from the gravitational center. Then the other quantum fields push particles or objects into a black hole. The gravitational waves push energy out from the objects. And then the energy or quantum fields behind that object push them into the gravitational center.  The elementary particles are quantum fields or whisk-looking structures. If the gravitational wave is

The CEO of Open AI, Sam Altman said that AI development requires a similar organization as IAEA.

We know that there are many risks in AI development. And there must be something that puts people realize that these kinds of things are not jokes. The problem is how to take control of the AI development. If we think about international contracts regarding AI development. We must realize that there is a possibility that the contract that should limit AI development turns into another version of the Nuclear Non-Proliferation Treaty. That treaty didn't ever deny the escalation of nuclear weapons. And there is a big possibility that the AI-limitation contracts follow the route of the Nuclear Non-Proliferation Treaty.  The biggest problem with AI development is the new platforms that can run every complicated and effective code. That means the quantum computer-based neural networks can turn themselves more intelligent than humans. The AI has the ultimate ability to learn new things. And if it runs on the quantum-hybrid system that switches its state between binary and quantum states,