Skip to main content

Mechanic and radio wave-based qubits are the easiest way to create quantum computers.

The idea of the radio wave-based qubits is simple. In this kind of system. Each radio frequency is one state of the qubit. So the quantum system can communicate over long distances. The quantum system breaks information into bites, and then it shares those information bites into different radio frequencies. If the system needs to share information on the same circuit there is a possibility to send those radio waves through nanotubes. 

The regular-size tubes can also use to protect that information. Those protective tubes can be made by using graphene nanotubes. But also steel is enough if the system doesn't need to fit in a small size. The only needed thing is that the tube keeps the outside effects away from the radio waves. 

The tube's purpose is that they isolate the information that travels in the form of radio waves between the transmitter and receiver. The information will transmit by using radio masers. There is the possibility that the energy level of those radio waves can use as the states of qubits. But the frequencies also are suitable for use as qubits. In those systems, there are protective tubes in the line. 

And each of those tubes is a certain state of the qubit. That system can operate on multiple levels. And in some visions when the system faces some kind of outside disturbing it decreases the number of states of its qubit. 



"A platform for an array of 36 mechanical resonator devices. A nano-resonator is fabricated and connected electrically in one of the sections of this array. The entire pieces is then placed inside the cryostat for the measurements. Credit: ICFO" (ScitechDaily.com/Journey to Quantum Supremacy: First Steps Toward Realizing Mechanical Qubits)




"A platform for an array of 36 mechanical resonator devices. Credit: ICFO" (ScitechDaily.com/ Journey to Quantum Supremacy: First Steps Toward Realizing Mechanical Qubits)

Acoustic qubits are one version of mechanic qubits. 


Acoustic qubits are similar. The base is in the acoustic resonance. The miniaturized systems can send coherent sound waves through the tubes. In those systems, each frequency is a certain state. The idea of an acoustic qubit is that each of the points. That transforms acoustic waves into electric signals and is made of different materials. Also things like how loud that acoustic signal is can use as a state of acoustic qubits. 

When the transmitter sends a signal that makes resonance in the certain receiver, that system can transform those signals into electricity. So each receiver is like the microphone and each transmitter can be like a loudspeaker that causes resonance in certain materials. Acoustic qubits are similar to radio-based qubits. But the thing that transmits information is acoustic waves. 


https://scitechdaily.com/journey-to-quantum-supremacy-first-steps-toward-realizing-mechanical-qubits/?expand_article=1

Comments

Popular posts from this blog

Schrödinger's cat: and the limits of that idea.

"In quantum mechanics, Schrödinger's cat is a thought experiment concerning quantum superposition". (Wikipedia, Schrödinger's cat). But the same thing can use as model for many other thought experiments.  Sooner or later, or at least in the ultimate end of the universe, the Schrödinger's cat will turn into wave movement. The information that this cat involved exists but the cat does not exist in its material form. The information doesn't ever vanish. It just turns its shape.  We are all trapped in the universe and time. The universe is the space that is entirety to us. There are no confirmed other universities. But the multiverse is a logical continuum for the expanding galactic megastructures.  The problem with natural things is this. They are black and white. They exist or do not exist. Could there be something, that exists and not exists at the same time?  Scrödinger's cat is thinking experiment about case their cat is not dead or not alive. But in this...

The string theory offers a new way to calculate Pi.

"Scientists discovered a new series for pi through string theory research, echoing a 15th-century formula by Madhava. By combining Euler-Beta Functions and Feynman Diagrams, they modeled particle interactions efficiently. Credit: SciTechDaily.com" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Leap in Mathematics) People normally think that. The pi is the ratio of the circumference circle's circumference to the circle's diameter. The Pi is a mathematical constant 3.14159..., the endless decimal number. The Pi is interesting because developers can use that decimal number to make the encryption algorithms stronger.  The idea is that the encryptions program hides the message's original ASCII numbers by multiplicating those numbers with some decimal number. Or the system can add some numbers to those ASCII numbers.  "Aninda Sinha (left) and Arnab Saha (right). Credit: Manu Y" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Le...

There are always more than three actors in the real world.

"An international research team is advancing precision timekeeping by developing a nuclear clock using thorium isotopes and innovative laser methods, potentially transforming our understanding of physical constants and dark matter. (Artist’s concept.) Credit: SciTechDaily.com" (ScitechDaily, Unveiling the Thorium Nuclear Clock and Its Time-Twisting Secrets) From Three-body problem... There are no pure three-body systems in nature. There are always more than three components in the system. For making real three-body systems we must separate those three bodies from the environment. Otherwise, there are stable effects. But nobody can predict some effects like distant supernova explosions or sun eruptions.  And one of those things that affect all bodies is time. When radioactive materials decay. That affects the stability and symmetry of the object.  Energy levels affect the existence of things like neutrons. The thorium atom clocks are next-generation tools for time measurement....