Skip to main content

Ajan hidastumista sekä neutronitähtiä



Yllä taitelijan näkemys Pulsaria PSR B1257+12 kiertävästä planeetasta

(Kuva: NASA)


https://sites.google.com/view/kimmonlinkit/etusivu

Kimmo Huosionmaa

Kirjassa “Lohikäärmeen muna” esitellään mielenkiintoinen ajatelma siitä, että mitä tapahtuu, jos neutronitähden pinnalla olisi jokin elämänmuoto. Aika kuluisi tuon kappaleen pinnalla hyvin hitaasti, koska aika kuluu tuossa äärimmäisessä painovoimakentässä hyvin hitaasti, kuten Einsteinin suhteellisuusteoria osoittaa. Ja tuon kappaleen äärimmäinen painovoima tekee siitä hyvin sileän. Neutroneista muodostuneella tähdellä  joita myös pulsarit ovat voi olla planeettoja kiertolaisinaan, eli esimerkiksi avaruudessa vaeltava neutronitähti voi ikään kuin ryöstää jonkun tähden planeettoja tai sitten niiden oman aurinkokunnan uloimpia jäseniä voi jäädä ehjäksi, kun tähti räjähtää. Samoin supernovaräjähdyksessä syntyvä interplanetaarinen pilvi voi sitten tiivistyä uudelleen planeetoiksi, jotka sitten vain kiertävät tätä neutronitähteä.



Pulsari on nopeasti kieppuva neutronitähti, jonka navoilta sinkoaa hiukkassuihkuja hyvin suurella nopeudella läpi universumin. Pulsarien taajuus on sitä suurempi, mitä enemmän ainetta niihin imeytyy, eli niihin imeytyvässä aineessa tapahtuu ydinreaktioita, mitkä kiihdyttävät tuon kappaleen pyörimistä, ja jos neutronitähti joutuu sitten tyhjään avaruuteen, niin sen pyörimisnopeus hidastuu. Jos tuo kappale sitten alkaa vetää hyvin suuria määriä ainetta itseään kohti, niin sen massa voi kasvaa niin, että neutronitähti romahtaa mustaksi aukoksi.



Ja siksi tällainen äärimmäinen ympäristö sitten saa aikaan ajatuksen siitä, millainen elämänmuoto tuollaisen kappaleen pinnalla voisi elää. Se että aika hidastuu jossain olosuhteissa ei tarkoita sitä, että toiminta tuon kappaleen pinnalla olisi sen hitaampaa kuin meidän ympäristössämme, ja koska tuon hypoteettisen olion sekunti olisi ehkä sata vuotta meidän tuntemassamme maailmassa, niin silloin tämä olio voisi kehittää sivilisaation sekunneissa tai tunneissa, joten tietenkin tällainen ajatus saa aikaan melko mielenkiintoisia mielikuvia siitä, mitä ehkä joskus tulevaisuudessa voimme tehdä.



Tuon olion olemus olisi oikeastaan samanlainen kuin meillä, eli se olisi oikeasti kolmiulotteinen, mutta kuitenkin se olisi meihin nähden niin pienikokoinen, että tämä neutronitähden pinnalla oleva olio vaikuttaisi kuitenkin olevan kaksiulotteinen, koska emme voi mitata sen kokoa.  Eli syy miksi he olisivat kolmiulotteisia johtuu siitä, että he eläisivät kuitenkin 3-ulotteisessa avaruudessa.



Mutta valtavan voimakkaan gravitaatiokentän takia nämä oliot olisivat meidän mielestämme kaksiulotteisia. Neutronitähden pinta on erittäin sileä, johtuen sen valtavan voimakkaasta gravitaatiokentästä, mikä sitten saa alkunsa siitä, että romahtaneen tähden materia on pakkautunut äärimmäisen tiheäksi neutroneista koostuvaksi tähdeksi, ja tuon materiaalin tiheyttä voidaan miettiä siltä pohjalta, että vähän Aurinkoa suurempi tähti puristuu 20 km halkaisijaltaan olevaksi palloksi, joka pyörii lähes valon nopeudella. Tuolloin tuon kappaleen protonit ja elektronit törmäävät toisiinsa ja kaikki tuon tähden materia muuttuu neutroneiksi.



Tuon kappaleen pinnalla olevat korkeuserot olisivat vain muutamia millimetrin tuhannesosia, joten me aistimme sen sileänä, jos menemme sen lähelle. Mutta koska neutronitähti saattaa pyöriä jopa valonnopeudella, jos se sattuu kiertämään jotain tähteä, jolloin tähdestä tuleva materiaali kiihdyttää sen pyörimistä akselinsa ympäri, niin jos me kosketamme tuota kappaletta, niin silloin kätemme hioutuisi pois johtuen noista pienistä epätasaisuuksista, ja tässä ei muuten sitten otettu huomioon tuota gravitaatiokenttää, joka puristaa ihmisen levyksi sen pinnalle, tai äärimmäistä magneettikenttää joka vetää ihmisen vesimolekyylit irti ruumiista.  Sivumennen sanoen neutronitähti olisi tuon kaksoistähtijärjestelmän keskustähti, jonka ympärillä sitten tuo suurempi tähti kieppuu.



Neutroni on sikäli hyvin erikoinen hiukkanen, että sillä on navat, ja tuon takia tämä hiukkanen voi muodostaa hiloja, jotka ovat periaatteessa samanlaisia kuin metalliatomien muodostama hila, joka tavataan kaikissa metallista tehdyissä esineissä. Tuo hila on erittäin sitkeä ja kova, jonka takia metalleja käytetään paljon erilaisissa rakenteissa. Mutta neutronitähti saa aikaan sellaisen mielikuvituksellisen ajatuksen tai mallin, missä kehitetään materiaali, jossa metalliatomit korvataan puhtailla neutroneilla. Silloin voidaan luoda niin jäykkä pinta, että edes musta aukko ei kykenisi sitä taivuttamaan. Tuollainen pelkistä neutroneista koostuva metalli on tietenkin olemassa, koska neutronitähdet koostuvat siitä. Joten ehkä tulevaisuudessa kehitetään sellainen ionitykkiin perustuva menetelmä, missä ensin protoneja törmäytetään elektronien kanssa, jolloin syntyy neutroneja.



Sitten nuo neutronit ajetaan hiukkaskiihdyttimen tai ionitykin läpi, sekä sitten pysäytetään oikeassa kohdaassa, ja jos tekniikka olisi tarpeeksi kehittynyttä, niin seuraava neutroni sitten voidaan ampua niin, että sen pohjoisnapa olisi edellisen neutronin etelänapaa vasten, jolloin nämä hiukkaset sitten tarttuvat toisiinsa. Tietenkin voidaan ajatella sellaista toimintamallia, missä ihmiskunta voisi tulevaisuudessa viedä tuollaisen neutronitähden pinnalle omia tiedemiehiään niin että ensin heidät pinennetään sopivaan kokoon, jotta nämä henkilöt eivät murskaannu valtavan painovoiman vaikutuksesta, ja sitten nämä henkilöt alkavat tässä hyvin utopiaan sekä mielikuvitukseen perustuvassa mallissa kehittää uusia tuotteita.



Tuo olion  puristaminen pieneen kokoon voisi tapahtua teoriassa siten, että ruumiin atomien elektronikuorten tyhjä tila poistetaan vetämällä atomien elektroniverhoja kasaan, ja tällöin atomeja ikään kuin pakataan kompaktiin tilaan. Nimittäin atomeissa on niin paljon tyhjää, että jos jalkapallokentän keskellä oleva tennispallo on atomin ydin, niin sen elektronikuoren sisin elektroni kiertää kentän reunalla, jos atomit sitten kasvatetaan siihen mittakaavaan missä me elämme. Ja joskus on mietitty mahdollisuutta ikään kuin puristaa elektronikuorilla olevia elektroneja lähemmäs atomin ydintä lisäämällä ytimen sähkövarausta, jolloin sitten voidaan oliota puristaa pienemmäksi, jolloin matka neutronitähden lähelle, niin että voisimme sitä koskettaa voi joskus tuhansien vuosien kuluttua ehkä olla mahdollinen.

https://luonnonihmeitakaikillamausteilla.wordpress.com/2017/09/06/ajan-hidastumista-seka-neutronitahtia/

http://kirjabloggaus.blogspot.fi/p/ajan-hidastumista-seka-neutronitahtia.html

Comments

Popular posts from this blog

Schrödinger's cat: and the limits of that idea.

"In quantum mechanics, Schrödinger's cat is a thought experiment concerning quantum superposition". (Wikipedia, Schrödinger's cat). But the same thing can use as model for many other thought experiments.  Sooner or later, or at least in the ultimate end of the universe, the Schrödinger's cat will turn into wave movement. The information that this cat involved exists but the cat does not exist in its material form. The information doesn't ever vanish. It just turns its shape.  We are all trapped in the universe and time. The universe is the space that is entirety to us. There are no confirmed other universities. But the multiverse is a logical continuum for the expanding galactic megastructures.  The problem with natural things is this. They are black and white. They exist or do not exist. Could there be something, that exists and not exists at the same time?  Scrödinger's cat is thinking experiment about case their cat is not dead or not alive. But in this...

The string theory offers a new way to calculate Pi.

"Scientists discovered a new series for pi through string theory research, echoing a 15th-century formula by Madhava. By combining Euler-Beta Functions and Feynman Diagrams, they modeled particle interactions efficiently. Credit: SciTechDaily.com" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Leap in Mathematics) People normally think that. The pi is the ratio of the circumference circle's circumference to the circle's diameter. The Pi is a mathematical constant 3.14159..., the endless decimal number. The Pi is interesting because developers can use that decimal number to make the encryption algorithms stronger.  The idea is that the encryptions program hides the message's original ASCII numbers by multiplicating those numbers with some decimal number. Or the system can add some numbers to those ASCII numbers.  "Aninda Sinha (left) and Arnab Saha (right). Credit: Manu Y" (ScitechDaily, String Theory Unravels New Pi Formula: A Quantum Le...

There are always more than three actors in the real world.

"An international research team is advancing precision timekeeping by developing a nuclear clock using thorium isotopes and innovative laser methods, potentially transforming our understanding of physical constants and dark matter. (Artist’s concept.) Credit: SciTechDaily.com" (ScitechDaily, Unveiling the Thorium Nuclear Clock and Its Time-Twisting Secrets) From Three-body problem... There are no pure three-body systems in nature. There are always more than three components in the system. For making real three-body systems we must separate those three bodies from the environment. Otherwise, there are stable effects. But nobody can predict some effects like distant supernova explosions or sun eruptions.  And one of those things that affect all bodies is time. When radioactive materials decay. That affects the stability and symmetry of the object.  Energy levels affect the existence of things like neutrons. The thorium atom clocks are next-generation tools for time measurement....